Zheng Wang, Meiyi Zhan, Pengdong Gao, Guojun Wang, Chu Qiu, Quan Qi, Jiankui Shi, Xiao Wang
{"title":"Automatic Detection and Classification of Spread‐F From Ionosonde at Hainan With Image‐Based Deep Learning Method","authors":"Zheng Wang, Meiyi Zhan, Pengdong Gao, Guojun Wang, Chu Qiu, Quan Qi, Jiankui Shi, Xiao Wang","doi":"10.1029/2023sw003498","DOIUrl":null,"url":null,"abstract":"Abstract An intelligent Spread‐F image detection and classification method is presented in this paper based on an ionogram image set using deep learning models. The ionogram images from the Hainan station, spanning from 2002 to 2015, have been manually labeled into five categories, resulting in a unique ionogram image set for supervised learning models. To balance the number of different types, simulated noises were added to these images. Based on 80,000 samples with Spread‐F and 20,000 samples without, numerous experiments have been conducted to train VGG, ResNet, EfficientNet, ViT, MobileNet, and other networks. The results on the test set indicate that these models except VGG have a good ability of exacting features of different types, leading to a high level of accuracy in detecting Spread‐F and a relatively accurate classification of it. The ionogram images in 2016 are then employed as another test set to further examine the performance of the trained models. Both quantitative and qualitative analyses have demonstrated the results obtained by deep learning models are highly consistent with manual identification.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003498","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An intelligent Spread‐F image detection and classification method is presented in this paper based on an ionogram image set using deep learning models. The ionogram images from the Hainan station, spanning from 2002 to 2015, have been manually labeled into five categories, resulting in a unique ionogram image set for supervised learning models. To balance the number of different types, simulated noises were added to these images. Based on 80,000 samples with Spread‐F and 20,000 samples without, numerous experiments have been conducted to train VGG, ResNet, EfficientNet, ViT, MobileNet, and other networks. The results on the test set indicate that these models except VGG have a good ability of exacting features of different types, leading to a high level of accuracy in detecting Spread‐F and a relatively accurate classification of it. The ionogram images in 2016 are then employed as another test set to further examine the performance of the trained models. Both quantitative and qualitative analyses have demonstrated the results obtained by deep learning models are highly consistent with manual identification.
期刊介绍:
Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.