Algebra preconditionings for 2D Riesz distributed‐order space‐fractional diffusion equations on convex domains

IF 1.8 3区 数学 Q1 MATHEMATICS
Mariarosa Mazza, Stefano Serra‐Capizzano, Rosita Luisa Sormani
{"title":"Algebra preconditionings for 2D Riesz distributed‐order space‐fractional diffusion equations on convex domains","authors":"Mariarosa Mazza, Stefano Serra‐Capizzano, Rosita Luisa Sormani","doi":"10.1002/nla.2536","DOIUrl":null,"url":null,"abstract":"Abstract When dealing with the discretization of differential equations on non‐rectangular domains, a careful treatment of the boundary is mandatory and may result in implementation difficulties and in coefficient matrices without a prescribed structure. Here we examine the numerical solution of a two‐dimensional constant coefficient distributed‐order space‐fractional diffusion equation with a nonlinear term on a convex domain. To avoid the aforementioned inconvenience, we resort to the volume‐penalization method, which consists of embedding the domain into a rectangle and in adding a reaction penalization term to the original equation that dominates in the region outside the original domain and annihilates the solution correspondingly. Thanks to the volume‐penalization, methods designed for problems in rectangular domains are available for those in convex domains and by applying an implicit finite difference scheme we obtain coefficient matrices with a 2‐level Toeplitz structure plus a diagonal matrix which arises from the penalty term. As a consequence of the latter, we can describe the asymptotic eigenvalue distribution as the matrix size diverges as well as estimate the intrinsic asymptotic ill‐conditioning of the involved matrices. On these bases, we discuss the performances of the conjugate gradient with circulant and ‐preconditioners and of the generalized minimal residual with split circulant and ‐preconditioners and conduct related numerical experiments.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nla.2536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract When dealing with the discretization of differential equations on non‐rectangular domains, a careful treatment of the boundary is mandatory and may result in implementation difficulties and in coefficient matrices without a prescribed structure. Here we examine the numerical solution of a two‐dimensional constant coefficient distributed‐order space‐fractional diffusion equation with a nonlinear term on a convex domain. To avoid the aforementioned inconvenience, we resort to the volume‐penalization method, which consists of embedding the domain into a rectangle and in adding a reaction penalization term to the original equation that dominates in the region outside the original domain and annihilates the solution correspondingly. Thanks to the volume‐penalization, methods designed for problems in rectangular domains are available for those in convex domains and by applying an implicit finite difference scheme we obtain coefficient matrices with a 2‐level Toeplitz structure plus a diagonal matrix which arises from the penalty term. As a consequence of the latter, we can describe the asymptotic eigenvalue distribution as the matrix size diverges as well as estimate the intrinsic asymptotic ill‐conditioning of the involved matrices. On these bases, we discuss the performances of the conjugate gradient with circulant and ‐preconditioners and of the generalized minimal residual with split circulant and ‐preconditioners and conduct related numerical experiments.
凸域上二维Riesz分布阶空间分数扩散方程的代数前提
当处理非矩形域上微分方程的离散化时,必须仔细处理边界,这可能会导致实现困难和没有规定结构的系数矩阵。本文研究了凸域上具有非线性项的二维常系数分布阶空间分数阶扩散方程的数值解。为了避免上述不便,我们采用了体积惩罚方法,该方法包括将区域嵌入到矩形中,并在原始方程中添加一个反应惩罚项,该反应惩罚项在原始区域外的区域占主导地位,并相应地湮灭解。由于体积惩罚,设计用于矩形域问题的方法可用于凸域问题,并且通过应用隐式有限差分格式,我们获得具有2级Toeplitz结构的系数矩阵加上由惩罚项产生的对角矩阵。作为后者的结果,我们可以描述矩阵大小发散时的渐近特征值分布,并估计相关矩阵的内在渐近病态条件。在此基础上,讨论了带循环和预条件的共轭梯度和带分裂循环和预条件的广义最小残差的性能,并进行了相关的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信