Oscar Iván Monsalve Camacho, Oscar Gonzalo Castillo-Romero, Carlos Ricardo Bojacá Aldana, Martha Cecilia Henao Toro
{"title":"Sustainability assessment methodology oriented to soil-associated agricultural experiments","authors":"Oscar Iván Monsalve Camacho, Oscar Gonzalo Castillo-Romero, Carlos Ricardo Bojacá Aldana, Martha Cecilia Henao Toro","doi":"10.1017/s0014479723000145","DOIUrl":null,"url":null,"abstract":"Summary A variety of established tools are available for agricultural sustainability assessment at global, regional, and farm geographical scales. However, no assessment has been reported in research literature to indicate their ability to provide insights about the most sustainable cropping system at plot level or experimental unit. Despite the environmental and social importance of soil in agricultural systems, many of the sustainability assessments use few or no indicators related to soil properties or processes. Hence, we propose a sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES) by defining its parameters through simulations and testing the methodology with real data from a fertilization tomato experiment with five treatments: chemical control (CR); organic control (OR); and organic:chemical ratios (OR) of 25:75, 50:50, and 75:25. The distance from the maximum, principal component analysis, and product of weighted indicator techniques were chosen for normalization, weighting, and aggregation in a single index process, respectively. Applying the SMAES methodology, the sustainability level of the treatments followed this sequence: CR (0.95) > O25:C75 (0.73) > O50:C50 (0.60) > O75:C25 (0.55) > OR (0.45). The proposed SMAES methodology allows soil researchers to define the best treatment through the interaction of the environmental, social, and economic dimensions of agricultural systems.","PeriodicalId":12245,"journal":{"name":"Experimental Agriculture","volume":"64 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0014479723000145","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Summary A variety of established tools are available for agricultural sustainability assessment at global, regional, and farm geographical scales. However, no assessment has been reported in research literature to indicate their ability to provide insights about the most sustainable cropping system at plot level or experimental unit. Despite the environmental and social importance of soil in agricultural systems, many of the sustainability assessments use few or no indicators related to soil properties or processes. Hence, we propose a sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES) by defining its parameters through simulations and testing the methodology with real data from a fertilization tomato experiment with five treatments: chemical control (CR); organic control (OR); and organic:chemical ratios (OR) of 25:75, 50:50, and 75:25. The distance from the maximum, principal component analysis, and product of weighted indicator techniques were chosen for normalization, weighting, and aggregation in a single index process, respectively. Applying the SMAES methodology, the sustainability level of the treatments followed this sequence: CR (0.95) > O25:C75 (0.73) > O50:C50 (0.60) > O75:C25 (0.55) > OR (0.45). The proposed SMAES methodology allows soil researchers to define the best treatment through the interaction of the environmental, social, and economic dimensions of agricultural systems.
期刊介绍:
With a focus on the tropical and sub-tropical regions of the world, Experimental Agriculture publishes the results of original research on field, plantation and herbage crops grown for food or feed, or for industrial purposes, and on farming systems, including livestock and people. It reports experimental work designed to explain how crops respond to the environment in biological and physical terms, and on the social and economic issues that may influence the uptake of the results of research by policy makers and farmers, including the role of institutions and partnerships in delivering impact. The journal also publishes accounts and critical discussions of new quantitative and qualitative methods in agricultural and ecosystems research, and of contemporary issues arising in countries where agricultural production needs to develop rapidly. There is a regular book review section and occasional, often invited, reviews of research.