Thermodynamic phase transition driven by topological excitations and their tensor network approach

None Song Feng-Feng, None Zhang Guang-Ming
{"title":"Thermodynamic phase transition driven by topological excitations and their tensor network approach","authors":"None Song Feng-Feng, None Zhang Guang-Ming","doi":"10.7498/aps.72.20231152","DOIUrl":null,"url":null,"abstract":"The fundamental concepts of phases and phase transitions constitute the cornerstone of our understanding of the physical universe. The historical development of the phase transition theory from Landau's spontaneous symmetry breaking paradigm to modern topological phase transition theories represents a major milestone in the evolution of numerous scientific disciplines. From the perspective of emergent philosophy, the interplay of topological excitations leads to enriched physical phenomena. One prominent prototype is the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, where unbinding of integer vortices occurs in the absence of spontaneous breaking of continuous <i>U</i>(1) symmetry. Using the state-of-the-art tensor network methods, we express the partition function of the two-dimensional <i>XY</i>-related system in terms of a product of one-dimensional transfer operators. From the singularities of the entanglement entropy of the one-dimensional transfer operator, we accurately determine the complete phase diagram. This method provides new insights into the emergent phenomenon driven by topological excitations, and sheds new light on future studies of 2D systems with continuous symmetries.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental concepts of phases and phase transitions constitute the cornerstone of our understanding of the physical universe. The historical development of the phase transition theory from Landau's spontaneous symmetry breaking paradigm to modern topological phase transition theories represents a major milestone in the evolution of numerous scientific disciplines. From the perspective of emergent philosophy, the interplay of topological excitations leads to enriched physical phenomena. One prominent prototype is the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, where unbinding of integer vortices occurs in the absence of spontaneous breaking of continuous U(1) symmetry. Using the state-of-the-art tensor network methods, we express the partition function of the two-dimensional XY-related system in terms of a product of one-dimensional transfer operators. From the singularities of the entanglement entropy of the one-dimensional transfer operator, we accurately determine the complete phase diagram. This method provides new insights into the emergent phenomenon driven by topological excitations, and sheds new light on future studies of 2D systems with continuous symmetries.
拓扑激励驱动的热力学相变及其张量网络方法
相和相变的基本概念构成了我们理解物理宇宙的基石。相变理论从朗道的自发对称性破缺范式发展到现代拓扑相变理论,是众多科学学科发展史上的一个重要里程碑。从涌现哲学的角度来看,拓扑激励的相互作用导致了丰富的物理现象。一个突出的原型是Berezinskii-Kosterlitz-Thouless (BKT)相变,在没有连续的<i>U</i>(1)对称性的自发破缺的情况下,整数涡旋的解结发生。利用最先进的张量网络方法,将二维<i>XY</i>相关系统的配分函数表示为一维传递算子的乘积。从一维传递算子的纠缠熵的奇异性出发,我们精确地确定了完整的相图。该方法为拓扑激励驱动的涌现现象提供了新的见解,并为具有连续对称性的二维系统的未来研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信