{"title":"Hyperbolic summation for fractional sums","authors":"Meselem Karras, Ling Li, Joshua Stucky","doi":"10.4064/aa230331-31-7","DOIUrl":null,"url":null,"abstract":"Let $\\tau (n)$ denote the number of positive divisors of an integer $n\\geq 1$ and let $\\lfloor \\cdot \\rfloor $ denote the integer part function. We evaluate asymptotically the sums $$ \\sum _{n\\leq x}f (\\lfloor x/n\\rfloor )\\tau (n), $$ where $f$ is an arit","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"42 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa230331-31-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\tau (n)$ denote the number of positive divisors of an integer $n\geq 1$ and let $\lfloor \cdot \rfloor $ denote the integer part function. We evaluate asymptotically the sums $$ \sum _{n\leq x}f (\lfloor x/n\rfloor )\tau (n), $$ where $f$ is an arit