Pterygium Classification Using Deep Patch Region-based Anterior Segment Photographed Images

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Nurul Syahira Mohamad Zamani, W Mimi Diyana W Zaki, Aqilah Baseri Huddin, Haliza Abdul Mutalib, Aini Hussain
{"title":"Pterygium Classification Using Deep Patch Region-based Anterior Segment Photographed Images","authors":"Nurul Syahira Mohamad Zamani, W Mimi Diyana W Zaki, Aqilah Baseri Huddin, Haliza Abdul Mutalib, Aini Hussain","doi":"10.17576/jkukm-2023-35(4)-04","DOIUrl":null,"url":null,"abstract":"Early pterygium screening is crucial to avoid blurred vision caused by cornea and pupil encroachment. However, medical assessment and conventional screening could be laborious and time-consuming to be implemented. This constraint seeks an advanced yet efficient automated pterygium screening to assist the current diagnostic method. Patch region-based anterior segment photographed images (ASPIs) focus the feature on a particular region of the pterygium growth. This work addresses the data limitation on deep neural network (DNN) processing with large-scale data requirements. It presents an automated pterygium classification of patch region-based ASPI using our previous re-establish network, “VggNet16wbn”, the VggNet16, with the addition of batch normalisation layer after each convolutional layer. During an image preprocessing step, the pterygium and nonpterygium tissue are extracted from ASPI, followed by the generation of a single and three-by-three image patch region-based on the size of the 85×85 dataset. Data preparation with 10-fold cross-validation has been conducted to ensure the data are well generalised to minimise the probability of underfitting and overfitting problems. The proposed experimental work has successfully classified the pterygium tissue with more than 99% accuracy, sensitivity, specificity, and precision using appropriate hyperparameters values. This work could be used as a baseline framework for pterygium classification using limited data processing.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"29 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(4)-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Early pterygium screening is crucial to avoid blurred vision caused by cornea and pupil encroachment. However, medical assessment and conventional screening could be laborious and time-consuming to be implemented. This constraint seeks an advanced yet efficient automated pterygium screening to assist the current diagnostic method. Patch region-based anterior segment photographed images (ASPIs) focus the feature on a particular region of the pterygium growth. This work addresses the data limitation on deep neural network (DNN) processing with large-scale data requirements. It presents an automated pterygium classification of patch region-based ASPI using our previous re-establish network, “VggNet16wbn”, the VggNet16, with the addition of batch normalisation layer after each convolutional layer. During an image preprocessing step, the pterygium and nonpterygium tissue are extracted from ASPI, followed by the generation of a single and three-by-three image patch region-based on the size of the 85×85 dataset. Data preparation with 10-fold cross-validation has been conducted to ensure the data are well generalised to minimise the probability of underfitting and overfitting problems. The proposed experimental work has successfully classified the pterygium tissue with more than 99% accuracy, sensitivity, specificity, and precision using appropriate hyperparameters values. This work could be used as a baseline framework for pterygium classification using limited data processing.
基于深度斑块区域的前段图像翼状胬肉分类
早期翼状胬肉筛查对于避免因角膜和瞳孔侵犯而引起的视力模糊至关重要。然而,医疗评估和常规筛查的实施可能既费力又耗时。本限制寻求先进而有效的自动翼状胬肉筛选,以协助目前的诊断方法。基于斑块区域的前段摄影图像(ASPIs)将特征集中在翼状胬肉生长的特定区域。这项工作解决了深度神经网络(DNN)处理大规模数据需求的数据限制。它使用我们之前的重建网络“VggNet16wbn”,即VggNet16,在每个卷积层之后添加了批归一化层,提出了基于补丁区域的ASPI的自动翼状胬肉分类。在图像预处理步骤中,从ASPI中提取翼状胬肉和非翼状胬肉组织,然后根据85×85数据集的大小生成单个和3 × 3的图像补丁区域。已经进行了10倍交叉验证的数据准备,以确保数据得到很好的泛化,以尽量减少欠拟合和过拟合问题的可能性。本实验成功地利用合适的超参数值对翼状胬肉组织进行了分类,准确度、灵敏度、特异性和精密度均超过99%。这项工作可以作为一个基线框架翼状胬肉分类使用有限的数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信