Integration of an RSA-2048-bit public key cryptography solution in the development of secure voice recognition processing applications

Nhu-Quynh Luc, Duc-Huy Quach, Chi-Hung Vu, Hong-Truong Nguyen, Thanh-Long Vo-Khac
{"title":"Integration of an RSA-2048-bit public key cryptography solution in the development of secure voice recognition processing applications","authors":"Nhu-Quynh Luc, Duc-Huy Quach, Chi-Hung Vu, Hong-Truong Nguyen, Thanh-Long Vo-Khac","doi":"10.31276/vjste.65(3).03-07","DOIUrl":null,"url":null,"abstract":"The authors initially employs the fast Fourier transform (FFT) approach to transforming voice inputs into digital signals before integrating a speech recognition solution (which includes two models: the hidden Markov model (HMM) and the artificial neural network (ANN)). To achieve standard-tone identification of voice signals and digitally store speech, the authors then incorporated a 2048-bit Rivest-Shamir-Adleman (RSA) encryption method to encrypt and decrypt digital speech. The authors’ building team constructed the program using a 256-bit advanced encryption standard - Galois counter mode (AES-GCM) encryption method to assure the application’s effectiveness. The authors successfully created a voice recognition application according to the HMM of ANN. The collected findings suggest that the authors’ secure speech recognition program (named soft voice - RSA) has improved in terms of safety, keeping speech material secret, and speed. It takes roughly 0.2 s to generate a 2048-bit RSA key pair that exceeds the National Institute of Standards and Technology (NIST) standard, 700-1070 ms to process speech, 1-4 ms to encrypt 2048-bit RSA, 6-8 ms to decrypt 2048-bit RSA.","PeriodicalId":23548,"journal":{"name":"Vietnam Journal of Science, Technology and Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science, Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.65(3).03-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors initially employs the fast Fourier transform (FFT) approach to transforming voice inputs into digital signals before integrating a speech recognition solution (which includes two models: the hidden Markov model (HMM) and the artificial neural network (ANN)). To achieve standard-tone identification of voice signals and digitally store speech, the authors then incorporated a 2048-bit Rivest-Shamir-Adleman (RSA) encryption method to encrypt and decrypt digital speech. The authors’ building team constructed the program using a 256-bit advanced encryption standard - Galois counter mode (AES-GCM) encryption method to assure the application’s effectiveness. The authors successfully created a voice recognition application according to the HMM of ANN. The collected findings suggest that the authors’ secure speech recognition program (named soft voice - RSA) has improved in terms of safety, keeping speech material secret, and speed. It takes roughly 0.2 s to generate a 2048-bit RSA key pair that exceeds the National Institute of Standards and Technology (NIST) standard, 700-1070 ms to process speech, 1-4 ms to encrypt 2048-bit RSA, 6-8 ms to decrypt 2048-bit RSA.
集成了rsa -2048位公钥加密解决方案,用于开发安全的语音识别处理应用
作者首先采用快速傅立叶变换(FFT)方法将语音输入转换为数字信号,然后集成语音识别解决方案(包括两个模型:隐马尔可夫模型(HMM)和人工神经网络(ANN))。为了实现语音信号的标准音调识别和数字存储语音,作者随后采用2048位的Rivest-Shamir-Adleman (RSA)加密方法对数字语音进行加密和解密。作者的构建团队使用256位高级加密标准-伽罗瓦计数器模式(AES-GCM)加密方法构建程序,以确保应用程序的有效性。作者根据神经网络的HMM成功地创建了一个语音识别应用程序。收集到的结果表明,作者的安全语音识别程序(命名为soft voice - RSA)在安全性、对语音材料的保密和速度方面都有所改进。生成一个超过美国国家标准与技术研究院(NIST)标准的2048位RSA密钥对大约需要0.2秒,处理语音需要700-1070毫秒,加密2048位RSA需要1-4毫秒,解密2048位RSA需要6-8毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信