Algorithmic Regularization in Model-Free Overparametrized Asymmetric Matrix Factorization

IF 1.9 Q1 MATHEMATICS, APPLIED
Liwei Jiang, Yudong Chen, Lijun Ding
{"title":"Algorithmic Regularization in Model-Free Overparametrized Asymmetric Matrix Factorization","authors":"Liwei Jiang, Yudong Chen, Lijun Ding","doi":"10.1137/22m1519833","DOIUrl":null,"url":null,"abstract":"We study the asymmetric matrix factorization problem under a natural nonconvex formulation with arbitrary overparametrization. The model-free setting is considered, with minimal assumption on the rank or singular values of the observed matrix, where the global optima provably overfit. We show that vanilla gradient descent with small random initialization sequentially recovers the principal components of the observed matrix. Consequently, when equipped with proper early stopping, gradient descent produces the best low-rank approximation of the observed matrix without explicit regularization. We provide a sharp characterization of the relationship between the approximation error, iteration complexity, initialization size, and stepsize. Our complexity bound is almost dimension-free and depends logarithmically on the approximation error, with significantly more lenient requirements on the stepsize and initialization compared to prior work. Our theoretical results provide accurate prediction for the behavior of gradient descent, showing good agreement with numerical experiments.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"22 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1519833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We study the asymmetric matrix factorization problem under a natural nonconvex formulation with arbitrary overparametrization. The model-free setting is considered, with minimal assumption on the rank or singular values of the observed matrix, where the global optima provably overfit. We show that vanilla gradient descent with small random initialization sequentially recovers the principal components of the observed matrix. Consequently, when equipped with proper early stopping, gradient descent produces the best low-rank approximation of the observed matrix without explicit regularization. We provide a sharp characterization of the relationship between the approximation error, iteration complexity, initialization size, and stepsize. Our complexity bound is almost dimension-free and depends logarithmically on the approximation error, with significantly more lenient requirements on the stepsize and initialization compared to prior work. Our theoretical results provide accurate prediction for the behavior of gradient descent, showing good agreement with numerical experiments.
无模型过参数化非对称矩阵分解的算法正则化
研究了具有任意过参数化的自然非凸公式下的非对称矩阵分解问题。考虑无模型设置,对观测矩阵的秩或奇异值的假设最小,其中全局最优可证明过拟合。我们证明了具有小随机初始化的香草梯度下降法顺序地恢复了观测矩阵的主成分。因此,当配备适当的早期停止时,梯度下降产生观测矩阵的最佳低秩近似,而无需显式正则化。我们提供了近似误差、迭代复杂度、初始化大小和步长之间关系的清晰表征。我们的复杂度界限几乎是无维的,并且对数地依赖于近似误差,与之前的工作相比,对步长和初始化的要求要宽松得多。我们的理论结果对梯度下降的行为进行了准确的预测,与数值实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信