Risk Budgeting Portfolio Optimization with Deep Reinforcement Learning

Seungwoo Han
{"title":"Risk Budgeting Portfolio Optimization with Deep Reinforcement Learning","authors":"Seungwoo Han","doi":"10.3905/jfds.2023.1.137","DOIUrl":null,"url":null,"abstract":"Risk budgeting (RB) portfolio optimization is one of the popular methods in asset allocation. The key benefit of this method is to control the risk contribution of each asset individually and reduce the unnecessary fluctuation in the allocation by not relying on the expected return of assets. The RB portfolio optimization requires one important parameter, a risk budget vector, and the portfolio performance is strongly influenced by the delicate choice of the values in this vector. Moreover, if the risk strategy allows deviation from a predefined risk budget, then it introduces the problem of finding the optimal time-dependent risk budget deviations. In this article, the author presents a reinforcement learning framework that can select this critical parameter optimally by learning how to control time-dynamic risk budgets in an automated and efficient manner. The experiment result shows that our agent can improve the target performance metric with statistical significance in the different asset universes, indicating that our agent can pick close to optimal risk budget deviations based on the learned policy.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Risk budgeting (RB) portfolio optimization is one of the popular methods in asset allocation. The key benefit of this method is to control the risk contribution of each asset individually and reduce the unnecessary fluctuation in the allocation by not relying on the expected return of assets. The RB portfolio optimization requires one important parameter, a risk budget vector, and the portfolio performance is strongly influenced by the delicate choice of the values in this vector. Moreover, if the risk strategy allows deviation from a predefined risk budget, then it introduces the problem of finding the optimal time-dependent risk budget deviations. In this article, the author presents a reinforcement learning framework that can select this critical parameter optimally by learning how to control time-dynamic risk budgets in an automated and efficient manner. The experiment result shows that our agent can improve the target performance metric with statistical significance in the different asset universes, indicating that our agent can pick close to optimal risk budget deviations based on the learned policy.
基于深度强化学习的风险预算组合优化
风险预算组合优化是资产配置中常用的方法之一。该方法的主要好处是可以单独控制各资产的风险贡献,减少配置中不必要的波动,不依赖于资产的预期收益。RB投资组合优化需要一个重要的参数,即风险预算向量,而该向量中值的精细选择对投资组合的绩效有很大影响。此外,如果风险策略允许偏离预定义的风险预算,那么它就引入了寻找最优时间相关风险预算偏差的问题。在本文中,作者提出了一个强化学习框架,通过学习如何以自动化和有效的方式控制时间动态风险预算,可以最优地选择这一关键参数。实验结果表明,我们的智能体可以在不同的资产领域中提高具有统计学意义的目标性能指标,这表明我们的智能体可以根据学习到的策略选择接近最优的风险预算偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信