Combinatorics of Exterior Peaks on Pattern-Avoiding Symmetric Transversals

Pub Date : 2023-09-15 DOI:10.1007/s00026-023-00664-0
Robin D. P. Zhou, Sherry H. F. Yan
{"title":"Combinatorics of Exterior Peaks on Pattern-Avoiding Symmetric Transversals","authors":"Robin D. P. Zhou,&nbsp;Sherry H. F. Yan","doi":"10.1007/s00026-023-00664-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal{S}\\mathcal{T}_{\\lambda }(\\tau )\\)</span> denote the set of symmetric transversals of a self-conjugate Young diagram <span>\\(\\lambda \\)</span> which avoid the permutation pattern <span>\\(\\tau \\)</span>. Given two permutations <span>\\(\\tau = \\tau _1\\tau _2\\ldots \\tau _n \\)</span> of <span>\\(\\{1,2,\\ldots ,n\\}\\)</span> and <span>\\(\\sigma =\\sigma _1\\sigma _2\\ldots \\sigma _m \\)</span> of <span>\\(\\{1,2,\\ldots ,m\\}\\)</span>, the <i>direct sum</i> of <span>\\(\\tau \\)</span> and <span>\\(\\sigma \\)</span>, denoted by <span>\\(\\tau \\oplus \\sigma \\)</span>, is the permutation <span>\\(\\tau _1\\tau _2\\ldots \\tau _n (\\sigma _1+n)(\\sigma _2+n)\\ldots (\\sigma _m+n)\\)</span>. We establish an exterior peak set preserving bijection between <span>\\(\\mathcal{S}\\mathcal{T}_{\\lambda }(321\\oplus \\tau )\\)</span> and <span>\\(\\mathcal{S}\\mathcal{T}_{\\lambda }(213\\oplus \\tau )\\)</span> for any pattern <span>\\(\\tau \\)</span> and any self-conjugate Young diagram <span>\\(\\lambda \\)</span>. Our result is a refinement of part of a result of Bousquet-Mélou–Steingrímsson for pattern-avoiding symmetric transversals. As applications, we derive several enumerative results concerning pattern-avoiding reverse alternating involutions, including two conjectured equalities posed by Barnabei–Bonetti–Castronuovo–Silimbani.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00664-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00664-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathcal{S}\mathcal{T}_{\lambda }(\tau )\) denote the set of symmetric transversals of a self-conjugate Young diagram \(\lambda \) which avoid the permutation pattern \(\tau \). Given two permutations \(\tau = \tau _1\tau _2\ldots \tau _n \) of \(\{1,2,\ldots ,n\}\) and \(\sigma =\sigma _1\sigma _2\ldots \sigma _m \) of \(\{1,2,\ldots ,m\}\), the direct sum of \(\tau \) and \(\sigma \), denoted by \(\tau \oplus \sigma \), is the permutation \(\tau _1\tau _2\ldots \tau _n (\sigma _1+n)(\sigma _2+n)\ldots (\sigma _m+n)\). We establish an exterior peak set preserving bijection between \(\mathcal{S}\mathcal{T}_{\lambda }(321\oplus \tau )\) and \(\mathcal{S}\mathcal{T}_{\lambda }(213\oplus \tau )\) for any pattern \(\tau \) and any self-conjugate Young diagram \(\lambda \). Our result is a refinement of part of a result of Bousquet-Mélou–Steingrímsson for pattern-avoiding symmetric transversals. As applications, we derive several enumerative results concerning pattern-avoiding reverse alternating involutions, including two conjectured equalities posed by Barnabei–Bonetti–Castronuovo–Silimbani.

Abstract Image

分享
查看原文
规避模式的对称横截面上的外峰组合学
让 \(\mathcal{S}\mathcal{T}_{\lambda }(\tau )\) 表示自共轭杨图 \(\lambda \)的对称横向的集合,这些横向避开了排列模式 \(\tau \)。Given two permutations \(\tau = \tau _1\tau _2\ldots \tau _n \) of \(\{1,2,\ldots ,n\}\) and \(\sigma = \sigma _1\sigma _2\ldots \sigma _m \) of \(\{1,2,\ldots ,m\}\)、的直接和,用 \(\tau oplus \sigma \)表示,是 permutation \(\tau _1tau _2\ldots \tau _n (\sigma _1+n)(\sigma _2+n)\ldots (\sigma _m+n)\)。对于任意图案 \(\tau \)和任意自共轭杨图 \(\lambda \),我们在 \(\mathcal{S}\mathcal{T}_{\lambda }(213\oplus \tau )\) 和 \(\mathcal{S}\mathcal{T}_{\lambda }(213\oplus \tau )\) 之间建立了一个外部峰集保持双投影。我们的结果是对 Bousquet-Mélou-Steingrímsson 关于图案避开对称横的部分结果的完善。作为应用,我们推导出了几个关于图案回避反向交替渐开线的枚举结果,包括巴纳贝-波内蒂-卡斯特罗诺沃-西林姆巴尼提出的两个猜想等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信