Polynomials realizing images of Galois representations of an elliptic curve

IF 0.5 Q3 MATHEMATICS
Zoé Yvon
{"title":"Polynomials realizing images of Galois representations of an elliptic curve","authors":"Zoé Yvon","doi":"10.7169/facm/2106","DOIUrl":null,"url":null,"abstract":"The aim of the inverse Galois problem is to find extensions of a given field whose Galois group is isomorphic to a given group. In this article, we are interested in subgroups of $\\mathrm{GL}_2(\\mathbb{Z}/n\\mathbb{Z})$ where $n$ is an integer. We know that, in general, we can realize these groups as the Galois group of a given number field, using the torsion points on an elliptic curve. Specifically, a theorem of Reverter and Vila gives, for each prime $n$, a polynomial, depending on an elliptic curve, whose Galois group is $\\mathrm{GL}_2(\\mathbb{Z}/n\\mathbb{Z})$. In this article, we generalize this theorem in several directions, in particular for $n$ not necessarily prime. We also determine a minimum for the valuations of the coefficients of the polynomials arising in our construction, depending only on $n$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the inverse Galois problem is to find extensions of a given field whose Galois group is isomorphic to a given group. In this article, we are interested in subgroups of $\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$ where $n$ is an integer. We know that, in general, we can realize these groups as the Galois group of a given number field, using the torsion points on an elliptic curve. Specifically, a theorem of Reverter and Vila gives, for each prime $n$, a polynomial, depending on an elliptic curve, whose Galois group is $\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$. In this article, we generalize this theorem in several directions, in particular for $n$ not necessarily prime. We also determine a minimum for the valuations of the coefficients of the polynomials arising in our construction, depending only on $n$.
实现椭圆曲线图像伽罗瓦表示的多项式
反伽罗瓦问题的目的是求伽罗瓦群与给定群同构的给定域的扩展。在本文中,我们感兴趣的是$\ mathm {GL}_2(\mathbb{Z}/n\mathbb{Z})$的子群,其中$n$是一个整数。我们知道,通常,我们可以利用椭圆曲线上的扭转点,将这些群实现为给定数域的伽罗瓦群。具体地说,Reverter和Vila的一个定理给出了对于每一个素数$n$,一个依赖于椭圆曲线的多项式,其伽罗瓦群为$\ mathm {GL}_2(\mathbb{Z}/n\mathbb{Z})$。在这篇文章中,我们在几个方向上推广了这个定理,特别是在$n$不一定是素数的情况下。我们还确定了在我们的构造中产生的多项式的系数值的最小值,仅取决于$n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信