{"title":"A novel power conversion structure for grid-connected photovoltaic applications based on MLI and LeBlanc transformer using IRSA technique","authors":"C Sonia, S Tamilselvi","doi":"10.1177/0958305x231210994","DOIUrl":null,"url":null,"abstract":"This article proposes a new energy conversion structure by employing a hybrid approach for grid-tied photovoltaic (PV) applications. This structure depends on the LeBlanc transformer and multilevel inverter (MLI). The proposed hybrid system combines the honey badger algorithm (HBA) and the reptile search algorithm (RSA). Crocodiles hunting behavior is enhanced by the HBA technique, also known as the IRSA technique. Voltage source inverters (VSI) are used in the proposed multilevel power converter. The MLI output is attached to the LeBlanc transformer. Multi-string technology is essential to the PV system's configuration. This innovative power converter's structural layout allows for an output voltage at the MLI's output. The proposed IRSA approach is utilized to regulate this power converter. This control system permits a fast and robust response from the MLI. This is also ensured by using the IRSA technique. The performance of the proposed hybrid method is run in MATLAB, and the performance is compared with various existing methods. From the simulation, the proposed approach-based efficiency is higher than the existing one. The proposed method shows a high efficiency of 99% compared with other existing methods, such as the salp swarm algorithm (SSA), bee colony optimization (BCO), and grasshopper optimization algorithm (GOA).","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0958305x231210994","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a new energy conversion structure by employing a hybrid approach for grid-tied photovoltaic (PV) applications. This structure depends on the LeBlanc transformer and multilevel inverter (MLI). The proposed hybrid system combines the honey badger algorithm (HBA) and the reptile search algorithm (RSA). Crocodiles hunting behavior is enhanced by the HBA technique, also known as the IRSA technique. Voltage source inverters (VSI) are used in the proposed multilevel power converter. The MLI output is attached to the LeBlanc transformer. Multi-string technology is essential to the PV system's configuration. This innovative power converter's structural layout allows for an output voltage at the MLI's output. The proposed IRSA approach is utilized to regulate this power converter. This control system permits a fast and robust response from the MLI. This is also ensured by using the IRSA technique. The performance of the proposed hybrid method is run in MATLAB, and the performance is compared with various existing methods. From the simulation, the proposed approach-based efficiency is higher than the existing one. The proposed method shows a high efficiency of 99% compared with other existing methods, such as the salp swarm algorithm (SSA), bee colony optimization (BCO), and grasshopper optimization algorithm (GOA).
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.