Integrating Computational Thinking Into Scaffolding Learning: An Innovative Approach to Enhance Science, Technology, Engineering, and Mathematics Hands-On Learning

IF 4 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Hsin-Yu Lee, Ting-Ting Wu, Chia-Ju Lin, Wei-Sheng Wang, Yueh-Min Huang
{"title":"Integrating Computational Thinking Into Scaffolding Learning: An Innovative Approach to Enhance Science, Technology, Engineering, and Mathematics Hands-On Learning","authors":"Hsin-Yu Lee, Ting-Ting Wu, Chia-Ju Lin, Wei-Sheng Wang, Yueh-Min Huang","doi":"10.1177/07356331231211916","DOIUrl":null,"url":null,"abstract":"Science, Technology, Engineering, and Mathematics (STEM) education is essential for developing future-ready learners in both secondary and higher education levels. However, as students transition to higher education, many encounter challenges with independent learning and research. This can negatively impact their Higher-Order Thinking Skills (HOTS), engagement, and practical expertise. This study introduces a solution: Computational Thinking Scaffolding (CTS) in the Jupyter Notebook environment, designed to enhance STEM education at the tertiary level. CTS incorporates five phases: Decomposition, Pattern Recognition, Abstraction, Algorithm Design, and Evaluation. Utilizing a quasi-experimental method, we assessed the impact of CTS on the HOTS, engagement, and practical skills of undergraduate and postgraduate students. Our findings hold substantial relevance for university educators, academic advisors, and curriculum designers aiming to enhance students’ HOTS and hands-on capabilities in STEM disciplines. The results validate the effectiveness of CTS in elevating tertiary STEM learning outcomes, and they spotlight the adaptability of the Jupyter Notebook as a valuable tool in higher education. In conclusion, our research underscores the merits of CTS for improving outcomes in higher STEM education and sets a benchmark for future endeavors in this domain.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"65 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231211916","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Science, Technology, Engineering, and Mathematics (STEM) education is essential for developing future-ready learners in both secondary and higher education levels. However, as students transition to higher education, many encounter challenges with independent learning and research. This can negatively impact their Higher-Order Thinking Skills (HOTS), engagement, and practical expertise. This study introduces a solution: Computational Thinking Scaffolding (CTS) in the Jupyter Notebook environment, designed to enhance STEM education at the tertiary level. CTS incorporates five phases: Decomposition, Pattern Recognition, Abstraction, Algorithm Design, and Evaluation. Utilizing a quasi-experimental method, we assessed the impact of CTS on the HOTS, engagement, and practical skills of undergraduate and postgraduate students. Our findings hold substantial relevance for university educators, academic advisors, and curriculum designers aiming to enhance students’ HOTS and hands-on capabilities in STEM disciplines. The results validate the effectiveness of CTS in elevating tertiary STEM learning outcomes, and they spotlight the adaptability of the Jupyter Notebook as a valuable tool in higher education. In conclusion, our research underscores the merits of CTS for improving outcomes in higher STEM education and sets a benchmark for future endeavors in this domain.
将计算思维融入脚手架学习:一种创新的方法来增强科学、技术、工程和数学的动手学习
科学、技术、工程和数学(STEM)教育对于培养中学和高等教育水平的未来学习者至关重要。然而,随着学生向高等教育的过渡,许多人在自主学习和研究方面遇到了挑战。这可能会对他们的高阶思维技能(HOTS)、参与度和实践专业知识产生负面影响。本研究介绍了一种解决方案:在Jupyter Notebook环境中的计算思维脚手架(CTS),旨在提高高等教育水平的STEM教育。CTS包含五个阶段:分解、模式识别、抽象、算法设计和评估。利用准实验方法,我们评估了CTS对本科生和研究生的HOTS、敬业度和实践技能的影响。我们的研究结果对旨在提高学生在STEM学科中的HOTS和动手能力的大学教育工作者、学术顾问和课程设计师具有重大意义。结果验证了CTS在提高高等STEM学习成果方面的有效性,并突出了Jupyter Notebook作为高等教育中有价值的工具的适应性。总之,我们的研究强调了CTS在提高高等STEM教育成果方面的优点,并为该领域的未来努力设定了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Educational Computing Research
Journal of Educational Computing Research EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
11.90
自引率
6.20%
发文量
69
期刊介绍: The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信