{"title":"Active learning sample selection - based on multicriteria","authors":"Zhonghai He, Kun Shen, Xiaofang Zhang","doi":"10.1177/09670335231211618","DOIUrl":null,"url":null,"abstract":"In multivariate calibration problems, model performance is affected significantly by the calibration samples used during model building. In recent years, active learning methods have become one of the best methods for sample selection. However, most active learning methods only select instances from prediction uncertainty or sample space distance, and these single-criteria methods tend to select undesired samples. In addition, sample density characterizes the spatial information carried by the sample, but few studies in quantitative analysis utilize sample density alone to select calibration samples. Considering these issues, based on the k-means clustering algorithm, this paper proposes an active learning sample selection method (DIDAL), which combines the three criteria of diversity, informativeness and sample density. The most representative sample is iteratively selected for - addition to the calibration set for modeling and estimating the chemical concentration of analytes. Soybean meal and soy sauce samples were analyzed by DIDAL and compared with existing sample selection methods. The prediction results show that the DIDAL algorithm significantly outperforms several existing algorithms and is close to the performance of full-sample modeling. A model with high prediction accuracy can be constructed by selecting only a few samples using the DIDAL method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09670335231211618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In multivariate calibration problems, model performance is affected significantly by the calibration samples used during model building. In recent years, active learning methods have become one of the best methods for sample selection. However, most active learning methods only select instances from prediction uncertainty or sample space distance, and these single-criteria methods tend to select undesired samples. In addition, sample density characterizes the spatial information carried by the sample, but few studies in quantitative analysis utilize sample density alone to select calibration samples. Considering these issues, based on the k-means clustering algorithm, this paper proposes an active learning sample selection method (DIDAL), which combines the three criteria of diversity, informativeness and sample density. The most representative sample is iteratively selected for - addition to the calibration set for modeling and estimating the chemical concentration of analytes. Soybean meal and soy sauce samples were analyzed by DIDAL and compared with existing sample selection methods. The prediction results show that the DIDAL algorithm significantly outperforms several existing algorithms and is close to the performance of full-sample modeling. A model with high prediction accuracy can be constructed by selecting only a few samples using the DIDAL method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.