{"title":"A Novel Individual Aircraft Life Monitoring Method Based on Reliable Life Consumption Assessment","authors":"Yueshuai Fu, Huimin Fu","doi":"10.3390/machines11111016","DOIUrl":null,"url":null,"abstract":"Individual life monitoring is crucial for ensuring aircraft flight safety. Conventional life-consumption-based monitoring methods ignore reliability, thus disjoining them from the aircraft’s reliable life determination and extension, where high confidence and reliability are required. Therefore, this paper proposes a reliable life consumption and individual life monitoring method for aircraft structure fatigue. In the paper, the P-S-N curve, i.e., the relationship between the aircraft structure’s life (N) and fatigue load (S) under a certain probability (P), is established, by which the lower confidence limit of the aircraft structure’s reliable life can be evaluated under any fatigue loads. Based on that and the aircraft’s monitored fatigue loads, the indexes of reliable life consumption and remaining reliable life percentages are proposed and assessed in real time for individual aircraft life monitoring and online life management. Case studies indicate that the proposed method can guarantee high confidence and reliability requirements in individual life monitoring, consistent with the aircraft’s life determination and extension, which are widely accepted nowadays in engineering practice.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"325 5","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Individual life monitoring is crucial for ensuring aircraft flight safety. Conventional life-consumption-based monitoring methods ignore reliability, thus disjoining them from the aircraft’s reliable life determination and extension, where high confidence and reliability are required. Therefore, this paper proposes a reliable life consumption and individual life monitoring method for aircraft structure fatigue. In the paper, the P-S-N curve, i.e., the relationship between the aircraft structure’s life (N) and fatigue load (S) under a certain probability (P), is established, by which the lower confidence limit of the aircraft structure’s reliable life can be evaluated under any fatigue loads. Based on that and the aircraft’s monitored fatigue loads, the indexes of reliable life consumption and remaining reliable life percentages are proposed and assessed in real time for individual aircraft life monitoring and online life management. Case studies indicate that the proposed method can guarantee high confidence and reliability requirements in individual life monitoring, consistent with the aircraft’s life determination and extension, which are widely accepted nowadays in engineering practice.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.