Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy

C Pub Date : 2023-11-08 DOI:10.3390/c9040106
Christoph W. Thurner, Leander Haug, Daniel Winkler, Christoph Griesser, Matthias Leitner, Toni Moser, Daniel Werner, Marco Thaler, Lucas A. Scheibel, Thomas Götsch, Emilia Carbonio, Julia Kunze-Liebhäuser, Engelbert Portenkirchner, Simon Penner, Bernhard Klötzer
{"title":"Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy","authors":"Christoph W. Thurner, Leander Haug, Daniel Winkler, Christoph Griesser, Matthias Leitner, Toni Moser, Daniel Werner, Marco Thaler, Lucas A. Scheibel, Thomas Götsch, Emilia Carbonio, Julia Kunze-Liebhäuser, Engelbert Portenkirchner, Simon Penner, Bernhard Klötzer","doi":"10.3390/c9040106","DOIUrl":null,"url":null,"abstract":"For the direct reduction of CO2 and H2O in solid oxide electrolysis cells (SOECs) with cermet electrodes toward methane, a fundamental understanding of the role of elemental carbon as a key intermediate within the reaction pathway is of eminent interest. The present synchrotron-based in situ near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) study shows that alloying of Ni/yttria-stabilized-zirconia (YSZ) cermet electrodes with Cu can be used to control the electrochemical accumulation of interfacial carbon and to optimize its reactivity toward CO2. In the presence of syngas, sufficiently high cathodic potentials induce excess methane on the studied Ni/yttria-stabilized-zirconia (YSZ)-, NiCu/YSZ- and Pt/gadolinium-doped-ceria (GDC) cermet systems. The hydrogenation of carbon, resulting from CO activation at the triple-phase boundary of Pt/GDC, is most efficient.","PeriodicalId":9397,"journal":{"name":"C","volume":"7 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c9040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the direct reduction of CO2 and H2O in solid oxide electrolysis cells (SOECs) with cermet electrodes toward methane, a fundamental understanding of the role of elemental carbon as a key intermediate within the reaction pathway is of eminent interest. The present synchrotron-based in situ near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) study shows that alloying of Ni/yttria-stabilized-zirconia (YSZ) cermet electrodes with Cu can be used to control the electrochemical accumulation of interfacial carbon and to optimize its reactivity toward CO2. In the presence of syngas, sufficiently high cathodic potentials induce excess methane on the studied Ni/yttria-stabilized-zirconia (YSZ)-, NiCu/YSZ- and Pt/gadolinium-doped-ceria (GDC) cermet systems. The hydrogenation of carbon, resulting from CO activation at the triple-phase boundary of Pt/GDC, is most efficient.
用原位x射线光电子能谱研究金属-电解质界面上CO甲烷化的电催化增强
对于使用金属陶瓷电极的固体氧化物电解电池(soec)将CO2和H2O直接还原为甲烷,对单质碳在反应途径中作为关键中间体的作用的基本理解是非常重要的。基于同步加速器的原位近大气压x射线光电子能谱(napp - xps)研究表明,镍/钇稳定氧化锆(YSZ)金属陶瓷电极与Cu的合金化可以控制界面碳的电化学积累,并优化其对CO2的反应性。在合成气存在的情况下,足够高的阴极电位诱导所研究的Ni/ ytri_ -稳定氧化锆(YSZ)-、NiCu/YSZ-和Pt/钆掺杂氧化铈(GDC)陶瓷体系产生过量的甲烷。在Pt/GDC三相边界处CO活化的碳的加氢是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
C
C
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信