A trajectory surface hopping study of the vibration-induced autodetachment dynamics of the 1-nitropropane anion

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kevin Issler, Roland Mitric, Jens Petersen
{"title":"A trajectory surface hopping study of the vibration-induced autodetachment dynamics of the 1-nitropropane anion","authors":"Kevin Issler, Roland Mitric, Jens Petersen","doi":"10.1007/s00214-023-03063-z","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we investigate the autodetachment dynamics of the 1-nitropropane anion after vibrational excitation of the energetically lowest C–H stretching mode using our recently developed extended quantum classical surface hopping approach including the detachment continuum. Therein the detachment from an electronic bound anion state is treated as a nonadiabatic transition into discretized detachment continuum states for an ensemble of classical nuclear trajectories propagated on quantum mechanical potential energy surfaces. The initial ensemble is obtained by sampling a phase space distribution accounting for the vibrational excitation of the C–H stretching mode of the molecule to match the experimental conditions. The simulated kinetic energy distribution of the ejected electrons reproduces characteristic features of the available experimental data. Analysis of the nuclear dynamics points out that the approach to neutral-like geometries with decreased pyramidalization angle of the NO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> group and reduced the N–O bond lengths are the crucial factors enhancing the ultrafast autodetachment process in vibrationally excited 1-nitropropane. This is facilitated when the dipole-bound first excited state of the anion is populated, which is structurally similar to the neutral system. Although only a small transient population of this state is observed, it acts as an efficient doorway to the detachment continuum and is responsible for a significant amount of the ejected electrons.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00214-023-03063-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this study, we investigate the autodetachment dynamics of the 1-nitropropane anion after vibrational excitation of the energetically lowest C–H stretching mode using our recently developed extended quantum classical surface hopping approach including the detachment continuum. Therein the detachment from an electronic bound anion state is treated as a nonadiabatic transition into discretized detachment continuum states for an ensemble of classical nuclear trajectories propagated on quantum mechanical potential energy surfaces. The initial ensemble is obtained by sampling a phase space distribution accounting for the vibrational excitation of the C–H stretching mode of the molecule to match the experimental conditions. The simulated kinetic energy distribution of the ejected electrons reproduces characteristic features of the available experimental data. Analysis of the nuclear dynamics points out that the approach to neutral-like geometries with decreased pyramidalization angle of the NO $$_2$$ 2 group and reduced the N–O bond lengths are the crucial factors enhancing the ultrafast autodetachment process in vibrationally excited 1-nitropropane. This is facilitated when the dipole-bound first excited state of the anion is populated, which is structurally similar to the neutral system. Although only a small transient population of this state is observed, it acts as an efficient doorway to the detachment continuum and is responsible for a significant amount of the ejected electrons.

Abstract Image

1-硝基丙烷阴离子振动诱导自脱离动力学的轨迹表面跳变研究
在本研究中,我们使用我们最近开发的扩展量子经典表面跳变方法,包括分离连续体,研究了1-硝基丙烷阴离子在能量最低的碳氢键拉伸模式振动激发后的自脱离动力学。其中,从电子束缚阴离子状态的脱离被视为在量子力学势能表面上传播的经典核轨迹系综的离散脱离连续态的非绝热跃迁。通过采样考虑分子C-H拉伸模式振动激发的相空间分布,得到初始系综,以匹配实验条件。模拟得到的抛射电子的动能分布与现有实验数据的特征基本一致。核动力学分析指出,减小NO $$_2$$ 2基团的锥体化角和减小N-O键的长度是促进1-硝基丙烷超快自脱离过程的关键因素。当阴离子的偶极束缚的第一激发态被填充时,这是促进的,它在结构上类似于中性系统。虽然只观察到这种状态的一小部分瞬态人口,但它作为分离连续体的有效入口,并负责大量的弹出电子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信