{"title":"A constrained swarm optimization algorithm for large-scale long-run investments using Sharpe ratio-based performance measures","authors":"Massimiliano Kaucic, Filippo Piccotto, Gabriele Sbaiz","doi":"10.1007/s10287-023-00483-x","DOIUrl":null,"url":null,"abstract":"Abstract We study large-scale portfolio optimization problems in which the aim is to maximize a multi-moment performance measure extending the Sharpe ratio. More specifically, we consider the adjusted for skewness Sharpe ratio, which incorporates the third moment of the returns distribution, and the adjusted for skewness and kurtosis Sharpe ratio, which exploits in addition the fourth moment. Further, we account for two types of real-world trading constraints. On the one hand, we impose stock market restrictions through cardinality, buy-in thresholds, and budget constraints. On the other hand, a turnover threshold restricts the total allowed amount of trades in the rebalancing phases. To deal with these asset allocation models, we embed a novel hybrid constraint-handling procedure into an improved dynamic level-based learning swarm optimizer. A repair operator maps candidate solutions onto the set characterized by the first type of constraints. Then, an adaptive $$\\ell _1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> -exact penalty function manages turnover violations. The focus of the paper is to highlight the importance of including higher-order moments in the performance measures for long-run investments, in particular when the market is turbulent. We carry out empirical tests on two worldwide sets of assets to illustrate the scalability and effectiveness of the proposed strategies, and to evaluate the performance of our investments compared to the strategy maximizing the Sharpe ratio.","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"8 32","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00483-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study large-scale portfolio optimization problems in which the aim is to maximize a multi-moment performance measure extending the Sharpe ratio. More specifically, we consider the adjusted for skewness Sharpe ratio, which incorporates the third moment of the returns distribution, and the adjusted for skewness and kurtosis Sharpe ratio, which exploits in addition the fourth moment. Further, we account for two types of real-world trading constraints. On the one hand, we impose stock market restrictions through cardinality, buy-in thresholds, and budget constraints. On the other hand, a turnover threshold restricts the total allowed amount of trades in the rebalancing phases. To deal with these asset allocation models, we embed a novel hybrid constraint-handling procedure into an improved dynamic level-based learning swarm optimizer. A repair operator maps candidate solutions onto the set characterized by the first type of constraints. Then, an adaptive $$\ell _1$$ ℓ1 -exact penalty function manages turnover violations. The focus of the paper is to highlight the importance of including higher-order moments in the performance measures for long-run investments, in particular when the market is turbulent. We carry out empirical tests on two worldwide sets of assets to illustrate the scalability and effectiveness of the proposed strategies, and to evaluate the performance of our investments compared to the strategy maximizing the Sharpe ratio.
期刊介绍:
Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition.
The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals.
Officially cited as: Comput Manag Sci