Christopher Aksland, Daniel L. Clark, Christopher A. Lupp, Andrew G. Alleyne
{"title":"Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle","authors":"Christopher Aksland, Daniel L. Clark, Christopher A. Lupp, Andrew G. Alleyne","doi":"10.1115/1.4064025","DOIUrl":null,"url":null,"abstract":"Abstract Novel conceptual aircraft designs have been enabled by more electrified aircraft components providing enhanced capability and versatility. Through the advancement of multi-disciplinary design optimization, control co-design methods have become a popular approach for system design conceptualization wherein the plant and control action are designed simultaneously to account for the coupling between vehicle subsystems and power management systems. Many prior efforts have focused on open-loop control co-design that can later be adapted for a more realistic operating case. This work focuses on the development and scalability of closed-loop control co-design that would result in a physically realizable plant and closed-loop control law. The theoretical approach is demonstrated practically through the design of a hybrid electric unmanned air vehicle and two feedback controllers that operate the hybrid power split and propulsion system. The system is designed to complete a dynamic 7 phase mission consisting of multiple cruise, dash, engage, dive, and climb segments as quickly as possible. Given the scale of the dynamic design problem, a convergence study is introduced that facilitates accurate and computationally tractable design optimization studies. The study is conducted for independent, sequential, and simultaneous design approaches. The results indicate high-speed motors, high voltage batteries, and responsive control gains result in a fast vehicle with high thrust-to-weight ratio. The simultaneous design solution had the best closed-loop performance, outclassing a baseline system design by over 30%.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"10 39","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Novel conceptual aircraft designs have been enabled by more electrified aircraft components providing enhanced capability and versatility. Through the advancement of multi-disciplinary design optimization, control co-design methods have become a popular approach for system design conceptualization wherein the plant and control action are designed simultaneously to account for the coupling between vehicle subsystems and power management systems. Many prior efforts have focused on open-loop control co-design that can later be adapted for a more realistic operating case. This work focuses on the development and scalability of closed-loop control co-design that would result in a physically realizable plant and closed-loop control law. The theoretical approach is demonstrated practically through the design of a hybrid electric unmanned air vehicle and two feedback controllers that operate the hybrid power split and propulsion system. The system is designed to complete a dynamic 7 phase mission consisting of multiple cruise, dash, engage, dive, and climb segments as quickly as possible. Given the scale of the dynamic design problem, a convergence study is introduced that facilitates accurate and computationally tractable design optimization studies. The study is conducted for independent, sequential, and simultaneous design approaches. The results indicate high-speed motors, high voltage batteries, and responsive control gains result in a fast vehicle with high thrust-to-weight ratio. The simultaneous design solution had the best closed-loop performance, outclassing a baseline system design by over 30%.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.