Numerical simulation and experimental study on electrochemical milling of cemented carbide

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yafeng He, Bo Xu, Hun Guo, Xurong Zhou, Jianhui Bai
{"title":"Numerical simulation and experimental study on electrochemical milling of cemented carbide","authors":"Yafeng He, Bo Xu, Hun Guo, Xurong Zhou, Jianhui Bai","doi":"10.1177/16878132231196490","DOIUrl":null,"url":null,"abstract":"In response to the difficulties in machining cemented carbide, this paper proposes a new approach to electrochemical milling of cemented carbide. A composite rotating tool cathode for electrochemical milling is designed, and the electric field simulation calculation is conducted for the electrochemical milling process. The electric field results show that as the tool cathode continues to penetrate, the machining area of electrochemical milling continues to increase, and the current density in the machining gap increases. After the tool cathode enters the semicircle, if the processing area of electrochemical milling remains unchanged, the amount of material removed per unit time remains unchanged, and the current density also remains stable. At the same time, orthogonal experiments and process parameter optimization were conducted on the electrochemical milling of cemented carbide side edges. The results showed that the maximum material removal was achieved under the process parameters of processing voltage 14 V, feed speed 10 mm/min, spindle speed 3000 r/min, and duty cycle of 70%. Based on the optimized process parameters of side-edge electrochemical milling, full edge electrochemical milling of experiment was carried out. When the feed rate is 0.3 mm/min, the surface of cemented carbide electrochemical milling is relatively flat and has a roughness of 0.389 μm.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231196490","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the difficulties in machining cemented carbide, this paper proposes a new approach to electrochemical milling of cemented carbide. A composite rotating tool cathode for electrochemical milling is designed, and the electric field simulation calculation is conducted for the electrochemical milling process. The electric field results show that as the tool cathode continues to penetrate, the machining area of electrochemical milling continues to increase, and the current density in the machining gap increases. After the tool cathode enters the semicircle, if the processing area of electrochemical milling remains unchanged, the amount of material removed per unit time remains unchanged, and the current density also remains stable. At the same time, orthogonal experiments and process parameter optimization were conducted on the electrochemical milling of cemented carbide side edges. The results showed that the maximum material removal was achieved under the process parameters of processing voltage 14 V, feed speed 10 mm/min, spindle speed 3000 r/min, and duty cycle of 70%. Based on the optimized process parameters of side-edge electrochemical milling, full edge electrochemical milling of experiment was carried out. When the feed rate is 0.3 mm/min, the surface of cemented carbide electrochemical milling is relatively flat and has a roughness of 0.389 μm.
硬质合金电化学铣削的数值模拟与实验研究
针对硬质合金加工的难点,提出了一种电化学铣削硬质合金的新方法。设计了一种电化学铣削复合旋转刀具阴极,并对电化学铣削过程进行了电场模拟计算。电场结果表明,随着刀具阴极的不断穿透,电化学铣削的加工面积不断增大,加工间隙中的电流密度增大。刀具阴极进入半圆后,如果电化学铣削加工区域不变,则单位时间内去除的材料量不变,电流密度也保持稳定。同时,对电化学铣削硬质合金侧刃进行了正交试验和工艺参数优化。结果表明:在加工电压为14 V、进给速度为10 mm/min、主轴转速为3000 r/min、占空比为70%的工艺参数下,材料去除率最大;在优化侧刃电化学铣削工艺参数的基础上,进行了全刃电化学铣削试验。当进给速度为0.3 mm/min时,硬质合金电化学铣削表面相对平坦,粗糙度为0.389 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信