Xinsha Zhang, Yonghui Bai, Jie Qin, Shengli Shi, Jiazhong Liu, Shuaibing Wang, Minhui Zhao, Guiming Shi, Changbing Ye, Guangsuo Yu
{"title":"Structural characterization of char during co-gasification from torrefied sludge and Yangchangwan bituminous coal","authors":"Xinsha Zhang, Yonghui Bai, Jie Qin, Shengli Shi, Jiazhong Liu, Shuaibing Wang, Minhui Zhao, Guiming Shi, Changbing Ye, Guangsuo Yu","doi":"10.1007/s40789-023-00638-w","DOIUrl":null,"url":null,"abstract":"Abstract The present study aims to investigate the physico-chemical structural evolution characteristics of char structure of CO 2 atmosphere torrefaction pretreated sludge with Yangchangwan bituminous coal (YC) during co-gasification. The co-gasification reactivity of torrefied sludge and YC was measured using a thermogravimetric analyzer. The co-gasification reactivity of torrefied sludge with YC was thoroughly explored in depth by in situ heating stage microscope coupled with traditional characterization means of char sample (Scanning electron microscope, nitrogen adsorption analyzer, laser Raman spectroscopy). The results show that the gasification reaction rate of sludge treated under CO 2 atmosphere and coal blended char was better than other char samples at 1100–1200 °C. The torrefied sludge under CO 2 atmosphere promoted its thermal decomposition to the maximum extent, so that it eventually was transformed into a large number of small broken particles. The specific surface area and I D1 /I G ratio of blended char of torrefied sludge under CO 2 atmosphere and YC were 1.70 and 1.07 times higher than that of YC, respectively. The in situ technique revealed that YC char with the addition of torrefied sludge undergo gasification by shrinking core modes and the presence of obvious ash melting flow phenomenon. It was more obvious than that of YC.","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40789-023-00638-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The present study aims to investigate the physico-chemical structural evolution characteristics of char structure of CO 2 atmosphere torrefaction pretreated sludge with Yangchangwan bituminous coal (YC) during co-gasification. The co-gasification reactivity of torrefied sludge and YC was measured using a thermogravimetric analyzer. The co-gasification reactivity of torrefied sludge with YC was thoroughly explored in depth by in situ heating stage microscope coupled with traditional characterization means of char sample (Scanning electron microscope, nitrogen adsorption analyzer, laser Raman spectroscopy). The results show that the gasification reaction rate of sludge treated under CO 2 atmosphere and coal blended char was better than other char samples at 1100–1200 °C. The torrefied sludge under CO 2 atmosphere promoted its thermal decomposition to the maximum extent, so that it eventually was transformed into a large number of small broken particles. The specific surface area and I D1 /I G ratio of blended char of torrefied sludge under CO 2 atmosphere and YC were 1.70 and 1.07 times higher than that of YC, respectively. The in situ technique revealed that YC char with the addition of torrefied sludge undergo gasification by shrinking core modes and the presence of obvious ash melting flow phenomenon. It was more obvious than that of YC.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.