{"title":"Formation of Dense Yttria-Stabilized Zirconia Thin Film by Aerosol Deposition Method for Metal-Supported Solid Oxide Fuel Cell Applications","authors":"Kyohei Manabe, Mitsuaki Echigo, Yuji Tsuda, Kazuyuki Minami, Jun Akedo, Hisao Ohnishi","doi":"10.1080/00219592.2023.2261771","DOIUrl":null,"url":null,"abstract":"The formation conditions of yttria-stabilized zirconia (YSZ) thin films using the aerosol deposition (AD) method were investigated for developing a metal-supported solid oxide fuel cell (SOFC) equipped with the YSZ electrolyte. Using the AD method under mild conditions with a carrier gas flow rate of 4 L/min, a dense YSZ thin film can be formed at room temperature on both a stainless steel plate as the support and an anode layer heat treated at 1050 °C of the SOFC. Further, a metal-supported SOFC equipped with the aerosol-deposited YSZ electrolyte can be fabricated at a heat-treatment temperature of 1050 °C or less throughout the production process. An open-circuit voltage of 1.05 V and a power density of ca. 0.17 W/cm2 at 0.8 V were confirmed in the obtained metal-supported SOFC operated at 750 °C.","PeriodicalId":15331,"journal":{"name":"Journal of Chemical Engineering of Japan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Engineering of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00219592.2023.2261771","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation conditions of yttria-stabilized zirconia (YSZ) thin films using the aerosol deposition (AD) method were investigated for developing a metal-supported solid oxide fuel cell (SOFC) equipped with the YSZ electrolyte. Using the AD method under mild conditions with a carrier gas flow rate of 4 L/min, a dense YSZ thin film can be formed at room temperature on both a stainless steel plate as the support and an anode layer heat treated at 1050 °C of the SOFC. Further, a metal-supported SOFC equipped with the aerosol-deposited YSZ electrolyte can be fabricated at a heat-treatment temperature of 1050 °C or less throughout the production process. An open-circuit voltage of 1.05 V and a power density of ca. 0.17 W/cm2 at 0.8 V were confirmed in the obtained metal-supported SOFC operated at 750 °C.
期刊介绍:
The Journal of Chemical Engineering of Japan (JCEJ) is a monthly publication in English of the Society of Chemical Engineers, Japan. The first issue appeared in 1968. JCEJ publishes timely original research in the broad field of chemical engineering ranging from fundamental principles to practical applications. JCEJ is an international research journal and invites your contributions and subscriptions.
All areas of chemical engineering are covered, including:
Physical Properties and Physical Chemistry,
Transport Phenomena and Fluid Engineering,
Particle Engineering,
Separation Engineering,
Thermal Engineering,
Chemical Reaction Engineering,
Process Systems Engineering and Safety,
Biochemical,
Food and Medical Engineering,
Micro and Nano Systems,
Materials Engineering and Interfacial Phenomena,
Energy, Environment, and
Engineering Education.