Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zaid Ameen Abduljabbar
{"title":"Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy","authors":"Zaid Ameen Abduljabbar","doi":"10.31449/inf.v47i8.4840","DOIUrl":null,"url":null,"abstract":"One of the segmentation techniques with the greatest degree of success used in numerous recent applications is multi-level thresholding. The selection of appropriate threshold values presents difficulties for traditional methods, however, and, as a result, techniques have been developed to address these difficulties multidimensionally. Such approaches have been shown to be an efficient way of identifying the areas affected in multi-cancer cases in order to define the treatment area. Multi-cancer methods that facilitate a certain degree of competence are thus required. This study tested storing MRI brain scans in a multidimensional image database, which is a significant departure from past studies, as a way to improve the efficacy, efficiency, and sensitivity of cancer detection. The evaluation findings offered success rates for cancer diagnoses of 99.08%, 99.87%, 94%; 97.08%, 98.3%, and 93.38% sensitivity; the success rates of the LED Internet connection in particular were 99.99%; 98.23%, 99.53%, and 99.98%.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"67 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i8.4840","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the segmentation techniques with the greatest degree of success used in numerous recent applications is multi-level thresholding. The selection of appropriate threshold values presents difficulties for traditional methods, however, and, as a result, techniques have been developed to address these difficulties multidimensionally. Such approaches have been shown to be an efficient way of identifying the areas affected in multi-cancer cases in order to define the treatment area. Multi-cancer methods that facilitate a certain degree of competence are thus required. This study tested storing MRI brain scans in a multidimensional image database, which is a significant departure from past studies, as a way to improve the efficacy, efficiency, and sensitivity of cancer detection. The evaluation findings offered success rates for cancer diagnoses of 99.08%, 99.87%, 94%; 97.08%, 98.3%, and 93.38% sensitivity; the success rates of the LED Internet connection in particular were 99.99%; 98.23%, 99.53%, and 99.98%.
基于多类模糊熵的可证明的高效多癌图像分割
在最近的许多应用中,最成功的分割技术之一是多级阈值分割。然而,选择适当的阈值对传统方法来说是困难的,因此,已经开发出了从多方面解决这些困难的技术。这种方法已被证明是一种有效的方法,可以识别多种癌症病例中受影响的区域,以便确定治疗区域。因此,需要多种癌症方法来促进一定程度的能力。这项研究测试了将MRI脑部扫描存储在一个多维图像数据库中,这与过去的研究有很大的不同,可以提高癌症检测的疗效、效率和灵敏度。评价结果对肿瘤的诊断成功率分别为99.08%、99.87%、94%;灵敏度分别为97.08%、98.3%和93.38%;其中LED上网成功率高达99.99%;98.23%, 99.53%和99.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信