Harmonic maps from $S^3$ into $S^2$ with low Morse index

IF 1.3 1区 数学 Q1 MATHEMATICS
Tristan Rivière
{"title":"Harmonic maps from $S^3$ into $S^2$ with low Morse index","authors":"Tristan Rivière","doi":"10.4310/jdg/1695236594","DOIUrl":null,"url":null,"abstract":"We prove that any smooth harmonic map from $S^3$ into $S^2$ of Morse index less or equal than $4$ has to be an harmonic morphism, that is the successive composition of an isometry of $S^3$, the Hopf fibration and an holomorphic map from $\\mathbb{C}P^1$ into itself.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":"42 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1695236594","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that any smooth harmonic map from $S^3$ into $S^2$ of Morse index less or equal than $4$ has to be an harmonic morphism, that is the successive composition of an isometry of $S^3$, the Hopf fibration and an holomorphic map from $\mathbb{C}P^1$ into itself.
低摩尔斯指数从$S^3$到$S^2$的谐波映射
证明了莫尔斯指数小于或等于$4$的从$S^3$到$S^2$的光滑调和映射必须是调和态射,即$S^3$的等距、Hopf纤维和$\mathbb{C}P^1$到自身的全纯映射的连续复合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信