{"title":"Short-Term Power Demand Forecasting Using Blockchain-Based Neural Networks Models","authors":"Ruohan Wang, Yunlong Chen, Entang Li, Hongwei Xing, Jianhui Zhang, Jing Li","doi":"10.20532/cit.2022.1005614","DOIUrl":null,"url":null,"abstract":"With the rapid development of blockchain technology, blockchain-based neural network short-term power demand forecasting has become a research hot spot in the power industry. This paper aims to combine neural network algorithms with blockchain technology to establish a trustworthy and efficient short-term demand forecasting model. By leveraging the distributed ledger and immutability features of blockchain, we ensure the security and reliability of power demand data. Meanwhile, short-term power demand forecasting research using neural networks has the potential to increase the stability of the power system and offer opportunities for improved operations. In this paper, the root mean-square-error model evaluation indicator was used to compare the back propagation (BP) neural network algorithm and the traditional forecasting algorithm. The evaluation was performed on the randomly selected five household power datasets. The results show that, by comparing the long short-term memory network (LSTM) model with the BP neural network model, it was determined that the average prediction impact increases by about 25.7% under stable power demand. The short-term power prediction model of the BP neural network has the average error values more than two times lower than the traditional prediction model. It was shown that the use of the BP neural network algorithm and blockchain could increase the accuracy of short-term power demand forecasting, allowing the neural network-based algorithm to be implemented and taken into account in the research on short-term power demand forecasting.","PeriodicalId":38688,"journal":{"name":"Journal of Computing and Information Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20532/cit.2022.1005614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of blockchain technology, blockchain-based neural network short-term power demand forecasting has become a research hot spot in the power industry. This paper aims to combine neural network algorithms with blockchain technology to establish a trustworthy and efficient short-term demand forecasting model. By leveraging the distributed ledger and immutability features of blockchain, we ensure the security and reliability of power demand data. Meanwhile, short-term power demand forecasting research using neural networks has the potential to increase the stability of the power system and offer opportunities for improved operations. In this paper, the root mean-square-error model evaluation indicator was used to compare the back propagation (BP) neural network algorithm and the traditional forecasting algorithm. The evaluation was performed on the randomly selected five household power datasets. The results show that, by comparing the long short-term memory network (LSTM) model with the BP neural network model, it was determined that the average prediction impact increases by about 25.7% under stable power demand. The short-term power prediction model of the BP neural network has the average error values more than two times lower than the traditional prediction model. It was shown that the use of the BP neural network algorithm and blockchain could increase the accuracy of short-term power demand forecasting, allowing the neural network-based algorithm to be implemented and taken into account in the research on short-term power demand forecasting.
期刊介绍:
CIT. Journal of Computing and Information Technology is an international peer-reviewed journal covering the area of computing and information technology, i.e. computer science, computer engineering, software engineering, information systems, and information technology. CIT endeavors to publish stimulating accounts of original scientific work, primarily including research papers on both theoretical and practical issues, as well as case studies describing the application and critical evaluation of theory. Surveys and state-of-the-art reports will be considered only exceptionally; proposals for such submissions should be sent to the Editorial Board for scrutiny. Specific areas of interest comprise, but are not restricted to, the following topics: theory of computing, design and analysis of algorithms, numerical and symbolic computing, scientific computing, artificial intelligence, image processing, pattern recognition, computer vision, embedded and real-time systems, operating systems, computer networking, Web technologies, distributed systems, human-computer interaction, technology enhanced learning, multimedia, database systems, data mining, machine learning, knowledge engineering, soft computing systems and network security, computational statistics, computational linguistics, and natural language processing. Special attention is paid to educational, social, legal and managerial aspects of computing and information technology. In this respect CIT fosters the exchange of ideas, experience and knowledge between regions with different technological and cultural background, and in particular developed and developing ones.