{"title":"Energy efficient smart manufacturing of pharmaceutical solid oral dosage forms","authors":"Ashley Dan, Rohit Ramachandran","doi":"10.20883/medical.e893","DOIUrl":null,"url":null,"abstract":"Background: The global pharmaceuticals market is a trillion-dollar industry which grows more than 5% annually. However, in comparison to other manufacturing industries (e.g., oil refining, automotive), the pharmaceutical sector lags in manufacturing innovation and automation. In the production of pharmaceutical solid dosage forms, the use of energy utilization as a performance measure of production efficiency has neither been implemented extensively, nor been optimized to maximize efficiency. This study will focus on the development and implementation of a smart manufacturing platform to optimize energy productivity whilst maintaining tablet quality via the consideration of different manufacturing scenarios.
 Methods: This study will consider three main unit operations (wet granulation, drying and milling) which are relatively more energy intensive in pharmaceutical downstream processing, used to produce solid dosage forms, such as tablets. Four case-studies will be considered, which are 1: baseline batch, 2: baseline continuous, 3: optimized batch and 4: optimized continuous. Smart manufacturing is implemented to present optimized cases 3: and 4: Improvements in the energy and performance metrics are quantified and compared to the baseline cases. 
 Results and conclusions: The smart manufacturing platform used in this study, integrates advanced process model development, optimization, technoeconomic analysis and data integration. The utilization of this framework contributed to a ~70% and ~80% improvement in energy utilization in the optimized batch and continuous cases, respectively, when compared to the baseline batch case. In the optimized cases, tablet quality was maintained within targeted specifications and was comparable to the baseline batch case. This smart manufacturing framework can be generalized for drug product manufacturing and other particulate-based industries such as food, agriculture, and fine chemicals.","PeriodicalId":16350,"journal":{"name":"Journal of Medical Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20883/medical.e893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The global pharmaceuticals market is a trillion-dollar industry which grows more than 5% annually. However, in comparison to other manufacturing industries (e.g., oil refining, automotive), the pharmaceutical sector lags in manufacturing innovation and automation. In the production of pharmaceutical solid dosage forms, the use of energy utilization as a performance measure of production efficiency has neither been implemented extensively, nor been optimized to maximize efficiency. This study will focus on the development and implementation of a smart manufacturing platform to optimize energy productivity whilst maintaining tablet quality via the consideration of different manufacturing scenarios.
Methods: This study will consider three main unit operations (wet granulation, drying and milling) which are relatively more energy intensive in pharmaceutical downstream processing, used to produce solid dosage forms, such as tablets. Four case-studies will be considered, which are 1: baseline batch, 2: baseline continuous, 3: optimized batch and 4: optimized continuous. Smart manufacturing is implemented to present optimized cases 3: and 4: Improvements in the energy and performance metrics are quantified and compared to the baseline cases.
Results and conclusions: The smart manufacturing platform used in this study, integrates advanced process model development, optimization, technoeconomic analysis and data integration. The utilization of this framework contributed to a ~70% and ~80% improvement in energy utilization in the optimized batch and continuous cases, respectively, when compared to the baseline batch case. In the optimized cases, tablet quality was maintained within targeted specifications and was comparable to the baseline batch case. This smart manufacturing framework can be generalized for drug product manufacturing and other particulate-based industries such as food, agriculture, and fine chemicals.