Application of BLSS-PE Mine 3D Laser Scanning Measurement System in Stability Analysis of a Uranium Mine Goaf

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING
{"title":"Application of BLSS-PE Mine 3D Laser Scanning Measurement System in Stability Analysis of a Uranium Mine Goaf","authors":"","doi":"10.24425/ams.2023.146861","DOIUrl":null,"url":null,"abstract":"Accurate understanding of the three-dimensional (3d) morphology of a complex goaf and its relative displacement in space is a precondition to further analyzing the stability of the cavity. in this study, to make an accurate stability analysis of the goaf, laser detection and numerical simulation are used to study the interior space form of goaf and the change characteristics of stress and displacement in goaf. The results of the study show that the BLSS-PE mining 3d laser system as a field detection tool can detect the morphology of the cavity more comprehensively and improve the accuracy of the detection data to a certain extent. Combined with the numerical simulation software analysis, it can be seen that the maximum principal stress in the 818-2# goaf increases after excavation. in addition, the maximum value appears in the top and bottom plates of the goaf, and the minimum stress remains nearly unchanged. The tensile stress appears in the upper and lower plates but is lower than the surrounding rock. The maximum horizontal and vertical displacements of the 818-2# goaf are small. The plastic zone appears in the surrounding rock of the goaf as the mining work progresses, but the area is small. it is concluded that the goaf is relatively stable overall. The research results may provide a strong reference for ground pressure management in mines and comprehensive control of goaves.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ams.2023.146861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate understanding of the three-dimensional (3d) morphology of a complex goaf and its relative displacement in space is a precondition to further analyzing the stability of the cavity. in this study, to make an accurate stability analysis of the goaf, laser detection and numerical simulation are used to study the interior space form of goaf and the change characteristics of stress and displacement in goaf. The results of the study show that the BLSS-PE mining 3d laser system as a field detection tool can detect the morphology of the cavity more comprehensively and improve the accuracy of the detection data to a certain extent. Combined with the numerical simulation software analysis, it can be seen that the maximum principal stress in the 818-2# goaf increases after excavation. in addition, the maximum value appears in the top and bottom plates of the goaf, and the minimum stress remains nearly unchanged. The tensile stress appears in the upper and lower plates but is lower than the surrounding rock. The maximum horizontal and vertical displacements of the 818-2# goaf are small. The plastic zone appears in the surrounding rock of the goaf as the mining work progresses, but the area is small. it is concluded that the goaf is relatively stable overall. The research results may provide a strong reference for ground pressure management in mines and comprehensive control of goaves.
BLSS-PE矿山三维激光扫描测量系统在某铀矿采空区稳定性分析中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信