Damage and Stability Analysis of Sandstone-Type Uranium Ore Body under Physical and Chemical Action of Leaching Solution

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING
{"title":"Damage and Stability Analysis of Sandstone-Type Uranium Ore Body under Physical and Chemical Action of Leaching Solution","authors":"","doi":"10.24425/ams.2023.146859","DOIUrl":null,"url":null,"abstract":"leaching SolUtion in this paper, the typical sand-conglomerate uranium ore in north china was taken as the research object. The uniaxial compression and tensile tests of sand-conglomerate specimens under natural status and acidic solution status were used to research the compressive strength, tensile strength, Young’s modulus, cohesion and internal friction angle. Focusing on this type of uranium deposit, during the underground design of the in-situ leaching mining method, the three-dimensional finite element method was used to conduct a numerical simulation of the liquid collecting tunnel with different structural parameters of 10 m×2 m, 3 m×2 m, 2 m×2 m, and comprehensively analyse the vertical displacement, principal stress and plastic deformation zone changes of the tunnelbefore and after leaching. Based on the results, influenced by an acidic aqueous solution, the grain of the conglomerate became soft and secondary pores appeared, resulting in the superimposed effect of physical damage and chemical damage. Macroscopically, an obvious decrease was witnessed in mechanical property. Based on the stability and economy factor of three scenarios before and after leaching, the scenario was recommended as the experimental testing scenario, specifically, two longitudinal collecting tunnel were arranged along the strike of the orebody, with the size of 3 m×2 m and the width of the middle pillar of 4 m. The results of the numerical simulation are significant in guiding the design of underground in-situ leaching technology and determining the structural parameters of the deposit.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ams.2023.146859","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

leaching SolUtion in this paper, the typical sand-conglomerate uranium ore in north china was taken as the research object. The uniaxial compression and tensile tests of sand-conglomerate specimens under natural status and acidic solution status were used to research the compressive strength, tensile strength, Young’s modulus, cohesion and internal friction angle. Focusing on this type of uranium deposit, during the underground design of the in-situ leaching mining method, the three-dimensional finite element method was used to conduct a numerical simulation of the liquid collecting tunnel with different structural parameters of 10 m×2 m, 3 m×2 m, 2 m×2 m, and comprehensively analyse the vertical displacement, principal stress and plastic deformation zone changes of the tunnelbefore and after leaching. Based on the results, influenced by an acidic aqueous solution, the grain of the conglomerate became soft and secondary pores appeared, resulting in the superimposed effect of physical damage and chemical damage. Macroscopically, an obvious decrease was witnessed in mechanical property. Based on the stability and economy factor of three scenarios before and after leaching, the scenario was recommended as the experimental testing scenario, specifically, two longitudinal collecting tunnel were arranged along the strike of the orebody, with the size of 3 m×2 m and the width of the middle pillar of 4 m. The results of the numerical simulation are significant in guiding the design of underground in-situ leaching technology and determining the structural parameters of the deposit.
浸出液作用下砂岩型铀矿体的破坏与稳定性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信