{"title":"Climatic factors regulate the assembly processes of abundant and rare microbial communities in desert soil","authors":"Qiang Sun, Hang-Yu Li, Kuan Li, Xiao-Qing Zhang, Ya-Bo Shi, Yan-Tao Wu, Xing Li, Zhi-Yong Li, Jing-Hui Zhang, Li-Xin Wang, Cun-Zhu Liang","doi":"10.1093/jpe/rtad032","DOIUrl":null,"url":null,"abstract":"Abstract Soil microorganisms including many rare taxa and few abundant taxa, have different contributions to the ecosystem functions and services. High throughput sequencing technology was used to analyze the species composition of soil samples by DNA sequencing. Soil microorganisms were divided into abundant taxa and rare taxa to reveal their composition. Correlation analysis and random forest method were used to further analyze the influence of environmental factors on the community. Finally, the beta nearest taxon index (βNTI) based on the null model was used to reveal the mechanism of soil microbial community assembly. The findings indicate that in desert soils, the community assembly of rare bacteria is almost entirely dominated by a homogeneous selection of deterministic processes. For comparison, stochastic processes had more pronounced effects on the abundant bacteria. However, both abundant and rare fungi exhibited similar patterns of community assembly, that is, deterministic and stochastic processes almost jointly determined the assembly processes of fungal communities. We observed that community assembly shifted from stochastic to deterministic processes with increasing mean annual precipitation (MAP) and mean annual temperature (MAT) for abundant bacteria. Conversely, for rare fungi, there was an inclination towards a shift from deterministic to stochastic processes with rising MAT. In conclusion, our findings provide compelling evidence that MAT and MAP regulate the community assembly process of abundant and rare microbial communities in desert soil. These findings establish a theoretical foundation for future investigations into the community structure and ecological functions of soil microorganisms.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":"65 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jpe/rtad032","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Soil microorganisms including many rare taxa and few abundant taxa, have different contributions to the ecosystem functions and services. High throughput sequencing technology was used to analyze the species composition of soil samples by DNA sequencing. Soil microorganisms were divided into abundant taxa and rare taxa to reveal their composition. Correlation analysis and random forest method were used to further analyze the influence of environmental factors on the community. Finally, the beta nearest taxon index (βNTI) based on the null model was used to reveal the mechanism of soil microbial community assembly. The findings indicate that in desert soils, the community assembly of rare bacteria is almost entirely dominated by a homogeneous selection of deterministic processes. For comparison, stochastic processes had more pronounced effects on the abundant bacteria. However, both abundant and rare fungi exhibited similar patterns of community assembly, that is, deterministic and stochastic processes almost jointly determined the assembly processes of fungal communities. We observed that community assembly shifted from stochastic to deterministic processes with increasing mean annual precipitation (MAP) and mean annual temperature (MAT) for abundant bacteria. Conversely, for rare fungi, there was an inclination towards a shift from deterministic to stochastic processes with rising MAT. In conclusion, our findings provide compelling evidence that MAT and MAP regulate the community assembly process of abundant and rare microbial communities in desert soil. These findings establish a theoretical foundation for future investigations into the community structure and ecological functions of soil microorganisms.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.