{"title":"Nashian game theory is incompatible with quantum physics","authors":"Michal Baczyk, Ghislain Fourny","doi":"10.1007/s40509-023-00309-0","DOIUrl":null,"url":null,"abstract":"Abstract We suggest to look at quantum measurement outcomes not through the lens of probability theory, but instead through decision theory. We introduce an original game-theoretical framework, model and algorithmic procedure where measurement scenarios are multiplayer games with a structure all observers agree on. Measurement axes and, newly, measurement outcomes are modeled as decisions with nature being an action-minimizing economic agent. We translate physical notions of causality, correlation, counterfactuals, and contextuality to particular aspects of game theory. We investigate the causal consistency of dynamic games with imperfect information from the quantum perspective and conclude that counterfactual dependencies should be distinguished from causation and correlation as a separate phenomenon of its own. Most significantly, we observe that game theory based on Nash equilibria stands in contradiction with a violation of Bell inequalities. Hence, we propose that quantum physics should be analyzed with non-Nashian game theory, the inner workings of which we demonstrate using our proposed model.","PeriodicalId":42871,"journal":{"name":"Quantum Studies-Mathematics and Foundations","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Studies-Mathematics and Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40509-023-00309-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We suggest to look at quantum measurement outcomes not through the lens of probability theory, but instead through decision theory. We introduce an original game-theoretical framework, model and algorithmic procedure where measurement scenarios are multiplayer games with a structure all observers agree on. Measurement axes and, newly, measurement outcomes are modeled as decisions with nature being an action-minimizing economic agent. We translate physical notions of causality, correlation, counterfactuals, and contextuality to particular aspects of game theory. We investigate the causal consistency of dynamic games with imperfect information from the quantum perspective and conclude that counterfactual dependencies should be distinguished from causation and correlation as a separate phenomenon of its own. Most significantly, we observe that game theory based on Nash equilibria stands in contradiction with a violation of Bell inequalities. Hence, we propose that quantum physics should be analyzed with non-Nashian game theory, the inner workings of which we demonstrate using our proposed model.
期刊介绍:
The primary goals of Quantum Studies: Mathematics and Foundations are to promote a deeper understanding of all fundamental aspects of quantum theory and to bridge between theoretical questions, foundational issues, mathematical methods, and the further evolution of quantum physics. Papers of high scientific quality in and between these domains are welcome. The emphasis is on mathematical methods and insights that lead to a better understanding of the paradoxical aspects of quantum physics and to its expansion into new domains. We encourage the creative use of such paradoxes and invite research articles and surveys. The target audience of this international journal are physicists, mathematicians and philosophers of science with an interest in the fundamental aspects of quantum theory.