Erosion and flow visualization in centrifugal slurry pumps: a comprehensive review of recent developments and future outlook

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Jagadeesh Banka, Anant Kumar Rai
{"title":"Erosion and flow visualization in centrifugal slurry pumps: a comprehensive review of recent developments and future outlook","authors":"Jagadeesh Banka, Anant Kumar Rai","doi":"10.1080/02726351.2023.2259336","DOIUrl":null,"url":null,"abstract":"AbstractPrimary goal of this article is to present recent developments in erosion research and associated particles in centrifugal slurry pumps. Solid particles in transported liquid cause severe erosion of components in centrifugal pumps causing poor performance and reduced lifespan. Erosion necessitates frequent repairs and maintenance replacements, resulting in significant financial losses. This article summarizes the effect of slurry erosion on the performance characteristics of centrifugal pumps handling different fluid and solid mixtures, as well as methods to reduce erosion. According to the majority of the literature, particle properties, pump geometry, and operating parameters have a paramount influence on pump characteristics. Recently, researchers attempted to improve the performance characteristics of centrifugal pumps by employing various flow visualization techniques, which also aid in understanding the solid particle interaction with various pump components. Therefore, recent advancements in flow visualization technology inside the centrifugal pump are also included. Further, specific studies on erosion in centrifugal slurry pumps from different industries are also provided. This study is beneficial to designers, process managers and researchers involved with slurry centrifugal pumps.Keywords: Centrifugal slurry pumpPIVparticleerosionsedimentefficiency AcknowledgmentThe authors would like to thank Science and Engineering Research Board [Grant No. SRG/2020/002452], India for financially supporting the present work.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors would like to thank Science and Engineering Research Board [Grant No. SRG/2020/002452], India for financially supporting the present work.","PeriodicalId":19742,"journal":{"name":"Particulate Science and Technology","volume":"70 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particulate Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02726351.2023.2259336","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractPrimary goal of this article is to present recent developments in erosion research and associated particles in centrifugal slurry pumps. Solid particles in transported liquid cause severe erosion of components in centrifugal pumps causing poor performance and reduced lifespan. Erosion necessitates frequent repairs and maintenance replacements, resulting in significant financial losses. This article summarizes the effect of slurry erosion on the performance characteristics of centrifugal pumps handling different fluid and solid mixtures, as well as methods to reduce erosion. According to the majority of the literature, particle properties, pump geometry, and operating parameters have a paramount influence on pump characteristics. Recently, researchers attempted to improve the performance characteristics of centrifugal pumps by employing various flow visualization techniques, which also aid in understanding the solid particle interaction with various pump components. Therefore, recent advancements in flow visualization technology inside the centrifugal pump are also included. Further, specific studies on erosion in centrifugal slurry pumps from different industries are also provided. This study is beneficial to designers, process managers and researchers involved with slurry centrifugal pumps.Keywords: Centrifugal slurry pumpPIVparticleerosionsedimentefficiency AcknowledgmentThe authors would like to thank Science and Engineering Research Board [Grant No. SRG/2020/002452], India for financially supporting the present work.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors would like to thank Science and Engineering Research Board [Grant No. SRG/2020/002452], India for financially supporting the present work.
离心浆泵的侵蚀和流动可视化:近期发展和未来展望的综合回顾
摘要本文的主要目的是介绍离心浆泵中侵蚀研究和相关颗粒的最新进展。输送液体中的固体颗粒对离心泵的部件造成严重的腐蚀,导致离心泵性能下降,寿命缩短。腐蚀需要经常维修和更换,造成重大的经济损失。本文综述了浆液冲蚀对离心泵处理不同流体和固体混合物性能特性的影响,以及减少冲蚀的方法。根据大多数文献,颗粒特性、泵的几何形状和操作参数对泵的特性有最重要的影响。最近,研究人员试图通过采用各种流动可视化技术来改善离心泵的性能特征,这也有助于理解固体颗粒与各种泵部件的相互作用。因此,离心泵内部流动可视化技术的最新进展也包括在内。此外,还对不同行业的离心浆料泵的冲蚀进行了具体研究。本研究对浆液离心泵的设计人员、工艺管理人员和研究人员有一定的参考价值。关键词:离心浆体泵ppivv颗粒侵蚀沉降效率感谢作者感谢科学与工程研究委员会[批准号]。SRG/2020/002452],为本工作提供资金支持。披露声明作者未报告潜在的利益冲突。作者要感谢科学与工程研究委员会[批准号:SRG/2020/002452],为本工作提供资金支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particulate Science and Technology
Particulate Science and Technology 工程技术-工程:化工
CiteScore
4.40
自引率
4.00%
发文量
86
审稿时长
12 months
期刊介绍: Particulate Science and Technology, an interdisciplinary journal, publishes papers on both fundamental and applied science and technology related to particles and particle systems in size scales from nanometers to millimeters. The journal''s primary focus is to report emerging technologies and advances in different fields of engineering, energy, biomaterials, and pharmaceutical science involving particles, and to bring institutional researchers closer to professionals in industries. Particulate Science and Technology invites articles reporting original contributions and review papers, in particular critical reviews, that are relevant and timely to the emerging and growing fields of particle and powder technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信