Ning Chen, Xiaodong Wang, Mei Huang, Zakhar Maletskyi, Harsha Ratnaweera, Xuejun Bi
{"title":"Quantitative study of biofilm yield and biomass distribution of a multi-stage moving-bed biofilm system","authors":"Ning Chen, Xiaodong Wang, Mei Huang, Zakhar Maletskyi, Harsha Ratnaweera, Xuejun Bi","doi":"10.2166/wrd.2023.009","DOIUrl":null,"url":null,"abstract":"Abstract A multi-stage anoxic/oxic (A/O) moving-bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. The active biomass quantity, bioactivity, and biomass yield of a pilot-scale multi-stage MBBR were investigated in this study. The microbial activity and heterotrophic yield coefficients (YH) were measured using respirometric techniques in each chamber at different temperature conditions. Meanwhile, the growth, nitrification, and denitrification rates of functional biomass were also quantified as specific respiration rate (SOUR). The total active biomass in the multi-stage A/O-MBBR system was 0.71–1.68 g COD/m2 for the aerobic reactor and 0.39–1.44 g COD/m2 for the anoxic reactor at 10–19 °C. The YH values for the anoxic reactors were 0.61–0.69, which were comparable to the recommended value of the activated sludge model (ASM1). The correlation coefficient between Nitrospira and the autotrophic specific respiration rate (SOURA) was 0.82. Meanwhile, denitrifying genera showed a significant correlation with the heterotrophic specific respiration rate (SOURH) and the active heterotrophic biomass (XH). This study provided insights into biomass distribution and the corresponding kinetic parameters for the multi-stage MBBR systems, which may serve as a reference for process design and trouble shooting.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":"9 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2023.009","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A multi-stage anoxic/oxic (A/O) moving-bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. The active biomass quantity, bioactivity, and biomass yield of a pilot-scale multi-stage MBBR were investigated in this study. The microbial activity and heterotrophic yield coefficients (YH) were measured using respirometric techniques in each chamber at different temperature conditions. Meanwhile, the growth, nitrification, and denitrification rates of functional biomass were also quantified as specific respiration rate (SOUR). The total active biomass in the multi-stage A/O-MBBR system was 0.71–1.68 g COD/m2 for the aerobic reactor and 0.39–1.44 g COD/m2 for the anoxic reactor at 10–19 °C. The YH values for the anoxic reactors were 0.61–0.69, which were comparable to the recommended value of the activated sludge model (ASM1). The correlation coefficient between Nitrospira and the autotrophic specific respiration rate (SOURA) was 0.82. Meanwhile, denitrifying genera showed a significant correlation with the heterotrophic specific respiration rate (SOURH) and the active heterotrophic biomass (XH). This study provided insights into biomass distribution and the corresponding kinetic parameters for the multi-stage MBBR systems, which may serve as a reference for process design and trouble shooting.