{"title":"Anion adsorption capacity from the iron hydroxyl group of Fe-modified Na-P1 type zeolite","authors":"Hiromichi Aono, Yasutaka Matsumoto, Yoshiteru Itagaki","doi":"10.2109/jcersj2.23023","DOIUrl":null,"url":null,"abstract":"A Fe-modified Na-P1 type artificial zeolite (Fe-P1) was prepared by mixing with the synthesized zeolite powder using chemical reagents and FeCl3 solution. The anion exchange capacity was generated by the iron hydroxyl group on the zeolite surface. Although the intensity of the X-ray diffraction (XRD) peaks for the zeolite phase decreased with an increase in the concentration of the mixed FeCl3 solution, the anion exchange ability for the phosphate was improved due to the increase in the surface area. The Fe-P1 zeolite showed a high selectivity for the anions of phosphoric acid and arsenic acid. The anion adsorption capacity was significantly increased under the acidic condition (pH 5) of the solution. Acidic treatment of the Fe-P1 zeolite was also effective for the anion adsorption.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"42 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
A Fe-modified Na-P1 type artificial zeolite (Fe-P1) was prepared by mixing with the synthesized zeolite powder using chemical reagents and FeCl3 solution. The anion exchange capacity was generated by the iron hydroxyl group on the zeolite surface. Although the intensity of the X-ray diffraction (XRD) peaks for the zeolite phase decreased with an increase in the concentration of the mixed FeCl3 solution, the anion exchange ability for the phosphate was improved due to the increase in the surface area. The Fe-P1 zeolite showed a high selectivity for the anions of phosphoric acid and arsenic acid. The anion adsorption capacity was significantly increased under the acidic condition (pH 5) of the solution. Acidic treatment of the Fe-P1 zeolite was also effective for the anion adsorption.
期刊介绍:
The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.