Enhanced reduction of thermal conductivity across kink dislocation textures in magnesium oxide

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
Wataru Sekimoto, Susumu Fujii, Masato Yoshiya
{"title":"Enhanced reduction of thermal conductivity across kink dislocation textures in magnesium oxide","authors":"Wataru Sekimoto, Susumu Fujii, Masato Yoshiya","doi":"10.2109/jcersj2.23066","DOIUrl":null,"url":null,"abstract":"Our understanding on how dislocation textures quantitatively affect thermal conductivity has been limited. We investigate the impact of kink dislocations on phonon thermal conduction in MgO by molecular dynamics, through changing edge and screw components in kink dislocations. The thermal conductivity is almost independent of the length of the edge component, but is rather reduced significantly with increasing the length of screw component, resulting in lower thermal conductivity than perfect edge dislocations. This reveals the combined effect of the edge and screw components on thermal conductivity beyond the simple description as one-dimensional obstacles and linear elastic strain field. Atomic contributions to thermal conductivity show that not only atoms in the vicinity of the kink dislocation cores but also those away from the cores exhibit suppressed thermal conductivity compared to the perfect edge dislocations. These results indicate that it is possible to efficiently reduce thermal conductivity in complex dislocation textures in real materials.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"47 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our understanding on how dislocation textures quantitatively affect thermal conductivity has been limited. We investigate the impact of kink dislocations on phonon thermal conduction in MgO by molecular dynamics, through changing edge and screw components in kink dislocations. The thermal conductivity is almost independent of the length of the edge component, but is rather reduced significantly with increasing the length of screw component, resulting in lower thermal conductivity than perfect edge dislocations. This reveals the combined effect of the edge and screw components on thermal conductivity beyond the simple description as one-dimensional obstacles and linear elastic strain field. Atomic contributions to thermal conductivity show that not only atoms in the vicinity of the kink dislocation cores but also those away from the cores exhibit suppressed thermal conductivity compared to the perfect edge dislocations. These results indicate that it is possible to efficiently reduce thermal conductivity in complex dislocation textures in real materials.
氧化镁中扭结位错织构间热导率的增强降低
我们对位错织构如何定量影响导热性的理解是有限的。我们从分子动力学的角度,通过改变扭位错中的边缘和螺旋分量,研究了扭位错对MgO中声子热传导的影响。热导率几乎与边缘构件的长度无关,但随着螺杆构件长度的增加,热导率明显降低,导致热导率低于完美的边缘位错。这揭示了边缘和螺旋组件对导热系数的综合影响,而不是简单地描述为一维障碍和线弹性应变场。原子对热导率的贡献表明,与完美的边缘位错相比,不仅在扭结位错核心附近的原子,而且远离核心的原子的热导率也受到抑制。这些结果表明,在实际材料中有效降低复杂位错织构的导热系数是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Ceramic Society of Japan
Journal of the Ceramic Society of Japan 工程技术-材料科学:硅酸盐
CiteScore
2.10
自引率
18.20%
发文量
170
审稿时长
2 months
期刊介绍: The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信