Binjie Chen, Jinghuang Lin, Bin Feng, Yuichi Ikuhara, Hiromichi Ohta
{"title":"High-mobility rutile SnO<sub>2</sub> epitaxial films grown on (1−100) α-Al<sub>2</sub>O<sub>3</sub>","authors":"Binjie Chen, Jinghuang Lin, Bin Feng, Yuichi Ikuhara, Hiromichi Ohta","doi":"10.2109/jcersj2.23035","DOIUrl":null,"url":null,"abstract":"Tin dioxide (SnO2) is a semiconductor with significant potential for use in the electronic industry, including sensors, transparent electrodes, and thin film transistors among other purposes. To realize these applications, the synthesis of high-quality thin films is a prerequisite. Here, we show the epitaxial growth of SnO2 films on (1100) α-Al2O3 (M-sapphire) by pulsed laser deposition method. The epitaxial relationship was clarified to be (001)[100]SnO2 || (1100)[0001] α-Al2O3 with 4-fold symmetry, consistent with that grown on (001) TiO2 single crystal. Orthorhombic distortion was absent, possibly owing to a combination of high strain relaxation due to a large lattice mismatch along [0001] α-Al2O3, coupled with a negligible mismatch-induced strain absence along [1120] α-Al2O3. The mobility increases up to ∼57 cm2 V−1 s−1 with increasing film thickness while the density of states (DOS) effective mass keeps a constant around the theoretical value of ∼0.3 m0. Furthermore, the trend of carrier concentration versus mobility is analogous to those of single crystal SnO2, thereby indicating the applicability of M-sapphire substrates in facilitating the epitaxial growth of high-quality SnO2 films.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"2013 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23035","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tin dioxide (SnO2) is a semiconductor with significant potential for use in the electronic industry, including sensors, transparent electrodes, and thin film transistors among other purposes. To realize these applications, the synthesis of high-quality thin films is a prerequisite. Here, we show the epitaxial growth of SnO2 films on (1100) α-Al2O3 (M-sapphire) by pulsed laser deposition method. The epitaxial relationship was clarified to be (001)[100]SnO2 || (1100)[0001] α-Al2O3 with 4-fold symmetry, consistent with that grown on (001) TiO2 single crystal. Orthorhombic distortion was absent, possibly owing to a combination of high strain relaxation due to a large lattice mismatch along [0001] α-Al2O3, coupled with a negligible mismatch-induced strain absence along [1120] α-Al2O3. The mobility increases up to ∼57 cm2 V−1 s−1 with increasing film thickness while the density of states (DOS) effective mass keeps a constant around the theoretical value of ∼0.3 m0. Furthermore, the trend of carrier concentration versus mobility is analogous to those of single crystal SnO2, thereby indicating the applicability of M-sapphire substrates in facilitating the epitaxial growth of high-quality SnO2 films.
期刊介绍:
The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.