Monitoring the degree of dilution during directed energy deposition of aluminum bronze and H13 tool steel using optical emission spectroscopy

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Malte Schmidt, Knut Partes, Rohan Rajput, Giorgi Phochkhua, Henry Köhler
{"title":"Monitoring the degree of dilution during directed energy deposition of aluminum bronze and H13 tool steel using optical emission spectroscopy","authors":"Malte Schmidt, Knut Partes, Rohan Rajput, Giorgi Phochkhua, Henry Köhler","doi":"10.2351/7.0001081","DOIUrl":null,"url":null,"abstract":"Controlling heat transfer in casting tools is a key quality aspect. It can be improved by selectively applying volumetric aluminum bronze (CuAl9.5Fe1.2) sections in the core of the tools and subsequently depositing these cores with hard-facing H13 tool steel. Directed energy deposition (DED) can be used for both additive manufacturing of aluminum bronze and hard-facing by depositing the filler material onto a substrate surface or previously manufactured bodies. A sufficient metallurgical bonding of the deposited filler material and the underlying layer must be ensured. Hence, the dilution is a key factor for quality assurance. However, high dilution of the underlying layer and the filler material negatively affects the desired properties and must be monitored. Optical emission spectroscopy of the DED process emissions is investigated by comparing the emission lines of the individual elements comprising the base and the filler materials. Multiple single tracks using aluminum bronze as the filler material are laser-cladded with varying power, onto the two different types of substrates, i.e., mild steel S355 (1.0570) and hot working tool steel H11 (1.2343). Additionally, single tracks of H13 (1.2344) are deposited with varying laser powers onto an additively manufactured core of aluminum bronze. Both resulting in deposition tracks with varying dilution values. Multiple emission lines of Cr, Fe, Cu, Al, and Mn are detected and measured (line intensity). Line intensity ratios using the element emission lines are calculated and correlated with the respective metallographic results of the deposition tracks (dilution and chemical composition). Deposition tracks with a higher dilution (CuAl9.5Fe1.2 onto S355/H11 as well as H13 onto CuAl9.5Fe1.2) showed an increased line intensity ratio of the underlying material to the filler material. Moreover, this technology was transferred in a multilayer industrial application.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"36 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling heat transfer in casting tools is a key quality aspect. It can be improved by selectively applying volumetric aluminum bronze (CuAl9.5Fe1.2) sections in the core of the tools and subsequently depositing these cores with hard-facing H13 tool steel. Directed energy deposition (DED) can be used for both additive manufacturing of aluminum bronze and hard-facing by depositing the filler material onto a substrate surface or previously manufactured bodies. A sufficient metallurgical bonding of the deposited filler material and the underlying layer must be ensured. Hence, the dilution is a key factor for quality assurance. However, high dilution of the underlying layer and the filler material negatively affects the desired properties and must be monitored. Optical emission spectroscopy of the DED process emissions is investigated by comparing the emission lines of the individual elements comprising the base and the filler materials. Multiple single tracks using aluminum bronze as the filler material are laser-cladded with varying power, onto the two different types of substrates, i.e., mild steel S355 (1.0570) and hot working tool steel H11 (1.2343). Additionally, single tracks of H13 (1.2344) are deposited with varying laser powers onto an additively manufactured core of aluminum bronze. Both resulting in deposition tracks with varying dilution values. Multiple emission lines of Cr, Fe, Cu, Al, and Mn are detected and measured (line intensity). Line intensity ratios using the element emission lines are calculated and correlated with the respective metallographic results of the deposition tracks (dilution and chemical composition). Deposition tracks with a higher dilution (CuAl9.5Fe1.2 onto S355/H11 as well as H13 onto CuAl9.5Fe1.2) showed an increased line intensity ratio of the underlying material to the filler material. Moreover, this technology was transferred in a multilayer industrial application.
利用发射光谱法监测铝青铜和H13工具钢定向能沉积过程中的稀释程度
控制铸造工具的热传递是一个关键的质量方面。可以通过选择性地在刀具芯中应用体积铝青铜(CuAl9.5Fe1.2)截面,然后在这些芯中沉积硬面H13工具钢来改进。定向能沉积(DED)既可以用于铝青铜的增材制造,也可以通过将填充材料沉积在衬底表面或先前制造的主体上来进行硬堆焊。必须确保沉积的填充材料和下垫层之间有充分的冶金结合。因此,稀释是质量保证的关键因素。然而,底层和填充材料的高度稀释会对期望的性能产生负面影响,必须加以监测。通过比较构成基底和填充材料的各个元素的发射谱线,研究了DED过程发射的光学发射光谱。使用铝青铜作为填充材料的多个单轨以不同的功率激光熔覆在两种不同类型的基材上,即低碳钢S355(1.0570)和热加工工具钢H11(1.2343)。此外,用不同的激光功率将H13(1.2344)的单径迹沉积在铝青铜的增材制造核心上。两者都导致不同稀释值的沉积轨迹。检测和测量了Cr, Fe, Cu, Al和Mn的多个发射线(线强度)。利用元素发射谱线计算谱线强度比,并与沉积轨迹(稀释和化学成分)的各自金相结果相关联。稀释度较高的沉积轨迹(CuAl9.5Fe1.2到S355/H11上,以及H13到CuAl9.5Fe1.2上)表明,衬底材料与填充材料的线强度比增加。此外,该技术还被转移到多层工业应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信