Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey

Max Hort, Zhenpeng Chen, Jie M. Zhang, Mark Harman, Federica Sarro
{"title":"Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey","authors":"Max Hort, Zhenpeng Chen, Jie M. Zhang, Mark Harman, Federica Sarro","doi":"10.1145/3631326","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning bias mitigation for ML classifiers. These methods can be distinguished based on their intervention procedure (i.e., pre-processing, in-processing, post-processing) and the technique they apply. We investigate how existing bias mitigation methods are evaluated in the literature. In particular, we consider datasets, metrics and benchmarking. Based on the gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating bias mitigation methods?), we hope to support practitioners in making informed choices when developing and evaluating new bias mitigation methods.","PeriodicalId":329595,"journal":{"name":"ACM Journal on Responsible Computing","volume":"164 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Responsible Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning bias mitigation for ML classifiers. These methods can be distinguished based on their intervention procedure (i.e., pre-processing, in-processing, post-processing) and the technique they apply. We investigate how existing bias mitigation methods are evaluated in the literature. In particular, we consider datasets, metrics and benchmarking. Based on the gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating bias mitigation methods?), we hope to support practitioners in making informed choices when developing and evaluating new bias mitigation methods.
机器学习分类器的偏见缓解:综合调查
本文提供了在机器学习(ML)模型中实现公平性的偏见缓解方法的全面调查。我们总共收集了341篇关于ML分类器偏倚缓解的出版物。这些方法可以根据其干预程序(即预处理,处理中,后处理)及其应用的技术来区分。我们调查了文献中如何评估现有的偏倚缓解方法。特别是,我们考虑数据集,指标和基准。基于所收集到的见解(例如,最流行的公平指标是什么?有多少数据集用于评估减轻偏倚的方法?),我们希望支持从业者在开发和评估新的减轻偏倚方法时做出明智的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信