Transiting Exoplanet Yields for the Roman Galactic Bulge Time Domain Survey Predicted from Pixel-level Simulations

IF 8.6 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Robert F. Wilson, Thomas Barclay, Brian P. Powell, Joshua Schlieder, Christina Hedges, Benjamin T. Montet, Elisa Quintana, Iain Mcdonald, Matthew T. Penny, Néstor Espinoza, Eamonn Kerins
{"title":"Transiting Exoplanet Yields for the Roman Galactic Bulge Time Domain Survey Predicted from Pixel-level Simulations","authors":"Robert F. Wilson, Thomas Barclay, Brian P. Powell, Joshua Schlieder, Christina Hedges, Benjamin T. Montet, Elisa Quintana, Iain Mcdonald, Matthew T. Penny, Néstor Espinoza, Eamonn Kerins","doi":"10.3847/1538-4365/acf3df","DOIUrl":null,"url":null,"abstract":"Abstract The Nancy Grace Roman Space Telescope (Roman) is NASA’s next astrophysics flagship mission, expected to launch in late 2026. As one of Roman’s core community science surveys, the Galactic Bulge Time Domain Survey (GBTDS) will collect photometric and astrometric data for over 100 million stars in the Galactic bulge in order to search for microlensing planets. To assess the potential with which Roman can detect exoplanets via transit, we developed and conducted pixel-level simulations of transiting planets in the GBTDS. From these simulations, we predict that Roman will find between ∼60,000 and ∼200,000 transiting planets—over an order of magnitude more planets than are currently known. While the majority of these planets will be giants ( R p > 4 R ⊕ ) on close-in orbits ( a < 0.3 au), the yield also includes between ∼7000 and ∼12,000 small planets ( R p < 4 R ⊕ ). The yield for small planets depends sensitively on the observing cadence and season duration, with variations on the order of ∼10%–20% for modest changes in either parameter, but is generally insensitive to the trade between surveyed area and cadence given constant slew/settle times. These predictions depend sensitively on the Milky Way’s metallicity distribution function, highlighting an opportunity to significantly advance our understanding of exoplanet demographics, in particular across stellar populations and Galactic environments.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"15 6","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/acf3df","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The Nancy Grace Roman Space Telescope (Roman) is NASA’s next astrophysics flagship mission, expected to launch in late 2026. As one of Roman’s core community science surveys, the Galactic Bulge Time Domain Survey (GBTDS) will collect photometric and astrometric data for over 100 million stars in the Galactic bulge in order to search for microlensing planets. To assess the potential with which Roman can detect exoplanets via transit, we developed and conducted pixel-level simulations of transiting planets in the GBTDS. From these simulations, we predict that Roman will find between ∼60,000 and ∼200,000 transiting planets—over an order of magnitude more planets than are currently known. While the majority of these planets will be giants ( R p > 4 R ⊕ ) on close-in orbits ( a < 0.3 au), the yield also includes between ∼7000 and ∼12,000 small planets ( R p < 4 R ⊕ ). The yield for small planets depends sensitively on the observing cadence and season duration, with variations on the order of ∼10%–20% for modest changes in either parameter, but is generally insensitive to the trade between surveyed area and cadence given constant slew/settle times. These predictions depend sensitively on the Milky Way’s metallicity distribution function, highlighting an opportunity to significantly advance our understanding of exoplanet demographics, in particular across stellar populations and Galactic environments.
从像素级模拟预测罗马银河凸起时域巡天的凌日系外行星产量
南希·格蕾丝·罗曼太空望远镜(Roman)是美国宇航局的下一个天体物理学旗舰任务,预计将于2026年底发射。作为Roman的核心社区科学调查之一,银河凸起时间域调查(GBTDS)将收集银河凸起中超过1亿颗恒星的光度和天体测量数据,以寻找微透镜行星。为了评估Roman通过凌日探测系外行星的潜力,我们在GBTDS中开发并进行了凌日行星的像素级模拟。从这些模拟中,我们预测罗曼将发现6万到20万颗凌日行星——比目前已知的行星多一个数量级。虽然这些行星中的大多数将是巨星(R >4 R⊕)在近距离轨道上(a <0.3 au),产量还包括约7000至约12000颗小行星(R p <4 r;小行星的产量敏感地取决于观测的节奏和季节持续时间,对于任何一个参数的适度变化,其变化顺序为~ 10%-20%,但在恒定的旋转/沉降时间下,通常对被测区域和节奏之间的交易不敏感。这些预测敏感地依赖于银河系的金属丰度分布函数,突出了一个显著推进我们对系外行星人口统计的理解的机会,特别是在恒星种群和银河系环境之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysical Journal Supplement Series
Astrophysical Journal Supplement Series 地学天文-天文与天体物理
CiteScore
14.50
自引率
5.70%
发文量
264
审稿时长
2 months
期刊介绍: The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信