H3GNN: Hybrid Hierarchical HyperGraph Neural Network for Personalized Session-based Recommendation

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhizhuo Yin, Kai Han, Pengzi Wang, Xi Zhu
{"title":"H3GNN: Hybrid Hierarchical HyperGraph Neural Network for Personalized Session-based Recommendation","authors":"Zhizhuo Yin, Kai Han, Pengzi Wang, Xi Zhu","doi":"10.1145/3630002","DOIUrl":null,"url":null,"abstract":"Personalized Session-based recommendation (PSBR) is a general and challenging task in the real world, aiming to recommend a session’s next clicked item based on the session’s item transition information and the corresponding user’s historical sessions. A session is defined as a sequence of interacted items during a short period. The PSBR problem has a natural hierarchical architecture in which each session consists of a series of items, and each user owns a series of sessions. However, the existing PSBR methods can merely capture the pairwise relation information within items and users. To effectively capture the hierarchical information, we propose a novel hierarchical hypergraph neural network to model the hierarchical architecture. Moreover, considering that the items in sessions are sequentially ordered, while the hypergraph can only model the set relation, we propose a directed graph aggregator (DGA) to aggregate the sequential information from the directed global item graph. By attentively combining the embeddings of the above two modules, we propose a framework dubbed H3GNN (Hybrid Hierarchical HyperGraph Neural Network). Extensive experiments on three benchmark datasets demonstrate the superiority of our proposed model compared to the state-of-the-art methods, and ablation experiment results validate the effectiveness of all the proposed components.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"25 7","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630002","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized Session-based recommendation (PSBR) is a general and challenging task in the real world, aiming to recommend a session’s next clicked item based on the session’s item transition information and the corresponding user’s historical sessions. A session is defined as a sequence of interacted items during a short period. The PSBR problem has a natural hierarchical architecture in which each session consists of a series of items, and each user owns a series of sessions. However, the existing PSBR methods can merely capture the pairwise relation information within items and users. To effectively capture the hierarchical information, we propose a novel hierarchical hypergraph neural network to model the hierarchical architecture. Moreover, considering that the items in sessions are sequentially ordered, while the hypergraph can only model the set relation, we propose a directed graph aggregator (DGA) to aggregate the sequential information from the directed global item graph. By attentively combining the embeddings of the above two modules, we propose a framework dubbed H3GNN (Hybrid Hierarchical HyperGraph Neural Network). Extensive experiments on three benchmark datasets demonstrate the superiority of our proposed model compared to the state-of-the-art methods, and ablation experiment results validate the effectiveness of all the proposed components.
H3GNN:用于个性化会话推荐的混合层次超图神经网络
基于会话的个性化推荐(PSBR)是现实世界中一个普遍且具有挑战性的任务,其目的是根据会话的项目转换信息和相应用户的历史会话来推荐会话的下一个点击项目。会话被定义为短时间内一系列相互作用的项目。PSBR问题具有自然的层次结构,其中每个会话由一系列项组成,每个用户拥有一系列会话。然而,现有的PSBR方法只能捕获项目和用户中的成对关系信息。为了有效地捕获层次信息,我们提出了一种新的层次超图神经网络来对层次结构进行建模。此外,考虑到会话中的项目是有序的,而超图只能对集合关系进行建模,我们提出了一种有向图聚合器(DGA)来对有向全局项目图中的顺序信息进行聚合。通过仔细结合上述两个模块的嵌入,我们提出了一个名为H3GNN(混合层次超图神经网络)的框架。在三个基准数据集上的大量实验证明了我们提出的模型与最先进的方法相比的优越性,烧蚀实验结果验证了所有提出的组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信