COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-10-23 DOI:10.3390/a16100494
Shubham Mathesul, Debabrata Swain, Santosh Kumar Satapathy, Ayush Rambhad, Biswaranjan Acharya, Vassilis C. Gerogiannis, Andreas Kanavos
{"title":"COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques","authors":"Shubham Mathesul, Debabrata Swain, Santosh Kumar Satapathy, Ayush Rambhad, Biswaranjan Acharya, Vassilis C. Gerogiannis, Andreas Kanavos","doi":"10.3390/a16100494","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has posed significant challenges in accurately diagnosing the disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using AI and machine learning techniques, our DL model aims to extract the most significant features from the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians in effectively screening and identifying probable COVID-19 patients. This study highlights the potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images. The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and mitigating the spread of the disease.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"25 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16100494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The COVID-19 pandemic has posed significant challenges in accurately diagnosing the disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using AI and machine learning techniques, our DL model aims to extract the most significant features from the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians in effectively screening and identifying probable COVID-19 patients. This study highlights the potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images. The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and mitigating the spread of the disease.
基于深度学习技术的胸部x线图像COVID-19检测
COVID-19大流行给准确诊断该疾病带来了重大挑战,因为重症病例可能出现类似肺炎的症状。实时逆转录聚合酶链式反应(RT-PCR)是传统的诊断技术;然而,它在耗时的实验室程序和试剂盒可用性方面存在局限性。胸部放射图像,如x光和计算机断层扫描(CT)扫描,在帮助诊断过程中是必不可少的。在这篇研究论文中,我们提出了一种基于卷积神经网络(cnn)的深度学习(DL)方法来增强从胸部x射线图像中检测COVID-19及其变体。基于使用人工智能和机器学习技术识别SARS和COVID-19的现有研究,我们的DL模型旨在从受影响个体的x射线扫描中提取最重要的特征。通过采用基于cnn的解释性技术,我们在检测COVID-19病例方面取得了高达97%的准确率,这可以帮助医生有效地筛查和识别可能的COVID-19患者。这项研究强调了DL在医学成像中的潜力,特别是在从放射图像中检测COVID-19方面。我们的模型提高了准确性,证明了它在帮助医疗保健专业人员和减轻疾病传播方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信