Shubham Mathesul, Debabrata Swain, Santosh Kumar Satapathy, Ayush Rambhad, Biswaranjan Acharya, Vassilis C. Gerogiannis, Andreas Kanavos
{"title":"COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques","authors":"Shubham Mathesul, Debabrata Swain, Santosh Kumar Satapathy, Ayush Rambhad, Biswaranjan Acharya, Vassilis C. Gerogiannis, Andreas Kanavos","doi":"10.3390/a16100494","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has posed significant challenges in accurately diagnosing the disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using AI and machine learning techniques, our DL model aims to extract the most significant features from the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians in effectively screening and identifying probable COVID-19 patients. This study highlights the potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images. The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and mitigating the spread of the disease.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"25 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16100494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The COVID-19 pandemic has posed significant challenges in accurately diagnosing the disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using AI and machine learning techniques, our DL model aims to extract the most significant features from the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians in effectively screening and identifying probable COVID-19 patients. This study highlights the potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images. The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and mitigating the spread of the disease.