{"title":"A Framework for the Unsupervised and Semi-Supervised Analysis of Visual Frames","authors":"Michelle Torres","doi":"10.1017/pan.2023.32","DOIUrl":null,"url":null,"abstract":"Abstract This article introduces to political science a framework to analyze the content of visual material through unsupervised and semi-supervised methods. It details the implementation of a tool from the computer vision field, the Bag of Visual Words (BoVW), for the definition and extraction of “tokens” that allow researchers to build an Image-Visual Word Matrix which emulates the Document-Term matrix in text analysis. This reduction technique is the basis for several tools familiar to social scientists, such as topic models, that permit exploratory, and semi-supervised analysis of images. The framework has gains in transparency, interpretability, and inclusion of domain knowledge with respect to other deep learning techniques. I illustrate the scope of the BoVW by conducting a novel visual structural topic model which focuses substantively on the identification of visual frames from the pictures of the migrant caravan from Central America.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"27 3","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pan.2023.32","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article introduces to political science a framework to analyze the content of visual material through unsupervised and semi-supervised methods. It details the implementation of a tool from the computer vision field, the Bag of Visual Words (BoVW), for the definition and extraction of “tokens” that allow researchers to build an Image-Visual Word Matrix which emulates the Document-Term matrix in text analysis. This reduction technique is the basis for several tools familiar to social scientists, such as topic models, that permit exploratory, and semi-supervised analysis of images. The framework has gains in transparency, interpretability, and inclusion of domain knowledge with respect to other deep learning techniques. I illustrate the scope of the BoVW by conducting a novel visual structural topic model which focuses substantively on the identification of visual frames from the pictures of the migrant caravan from Central America.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.