Hyperparameter Optimization of CNN Classifier for Music Genre Classification

Rendra Soekarta, Suhardi Aras, None Ahmad Nur Aswad
{"title":"Hyperparameter Optimization of CNN Classifier for Music Genre Classification","authors":"Rendra Soekarta, Suhardi Aras, None Ahmad Nur Aswad","doi":"10.29207/resti.v7i5.5319","DOIUrl":null,"url":null,"abstract":"Playing music through a digital platform that has a large database of songs requires automated classification of music genres, highlighting the need to develop a model for music genre classification that is more efficient and accurate. This study evaluated the hyperparameters in the music genre classification process using CNN in the GTZAN dataset with 30-second duration data optimized using MFCC feature extraction. The model that is formed with a time of 3 (three) seconds classifies music genres in the first 3 seconds of music. This model has a high potential for error because the first 3 seconds of initial music are varied and cannot be used as a benchmark in determining music genres. This study performed hyperparameters on batch size, epoch, and split data set variables with various scenarios. The highest precision result was obtained at 72% with a data split of 85%:15%, 32 batch sizes, and 500 epochs.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"360 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i5.5319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Playing music through a digital platform that has a large database of songs requires automated classification of music genres, highlighting the need to develop a model for music genre classification that is more efficient and accurate. This study evaluated the hyperparameters in the music genre classification process using CNN in the GTZAN dataset with 30-second duration data optimized using MFCC feature extraction. The model that is formed with a time of 3 (three) seconds classifies music genres in the first 3 seconds of music. This model has a high potential for error because the first 3 seconds of initial music are varied and cannot be used as a benchmark in determining music genres. This study performed hyperparameters on batch size, epoch, and split data set variables with various scenarios. The highest precision result was obtained at 72% with a data split of 85%:15%, 32 batch sizes, and 500 epochs.
音乐类型分类CNN分类器的超参数优化
通过拥有大量歌曲数据库的数字平台播放音乐需要对音乐类型进行自动分类,这突出了开发更高效、更准确的音乐类型分类模型的必要性。本研究利用MFCC特征提取优化的30秒时长数据,在GTZAN数据集上使用CNN对音乐类型分类过程中的超参数进行了评估。以3(3)秒的时间形成的模型在音乐的前3秒对音乐类型进行分类。这个模型很有可能出错,因为初始音乐的前3秒是多变的,不能作为确定音乐类型的基准。本研究在各种场景下对批大小、epoch和拆分数据集变量执行超参数。获得的最高精度结果为72%,数据分割为85%:15%,32批大小,500次epoch。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信