Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning

IF 1.9 Q1 MATHEMATICS, APPLIED
Keaton Hamm, Nick Henscheid, Shujie Kang
{"title":"Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning","authors":"Keaton Hamm, Nick Henscheid, Shujie Kang","doi":"10.1137/22m1490053","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"56 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1490053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.
Wassmap:用于图像流形学习的Wasserstein等距离映射
在本文中,我们提出了一种非线性降维技术Wasserstein Isometric Mapping (Wassmap),它解决了现有全局非线性降维算法在成像应用中的一些缺陷。Wassmap通过Wasserstein空间中的概率度量来表示图像,然后在相关度量之间使用成对的Wasserstein距离来产生低维的、近似等距的嵌入。我们证明了该算法能够准确地恢复某些图像流形的参数,包括由固定生成度量的平移或扩张产生的图像流形。此外,我们展示了该算法的一个离散版本,通过提供一个理论桥梁,将恢复结果从功能数据转移到离散数据,从离散测量产生的流形中检索参数。在各种图像数据流形上的测试表明,与其他全局和局部技术相比,Wassmap产生了良好的嵌入效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信