{"title":"Investigation and analysis of the Iranian autumn rainfall thickness pattern","authors":"Hossein Jahantigh","doi":"10.28974/idojaras.2023.3.1","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate and analyze the trend of autumn precipitation thickness pattern in Iran. For this purpose, two environmental and atmospheric databases have been used. Environmental data is prepared and networked in two stages, in the first stage with the help of 1434 stations and in the second stage with the help of 1061 stations. Atmospheric data includes geopotential height data obtained from the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP / NCAR). The spatial resolution of this data is 2.5 × 2.5 degrees. The thickness of the atmosphere, which is usually between 500 and 1000 hectopascals, is shown. This thickness is considered as the thickness of the whole atmosphere. The results of the autumn precipitation trend showed that although autumn precipitation on monthly and annual scales has experienced an increasing trend in most regions, in less than 5% of Iran, the upward trend has been significant. The most intense upward trend is observed in the form of spots in the central and northern parts of the Zagros Mountain, while the greatest decreasing trend has been observed in the form of cores along the Caspian coastal cities. The results of the autumn precipitation thickness pattern showed that the autumn precipitation thickness pattern is affected by deflection and instability due to high latitude cold and humid weather and low latitude hot and humid weather occurred in North Africa, in such a way that the Black Sea and the Mediterranean Sea provide the required moisture in high latitudes and the Red Sea and the Persian Gulf in low latitudes.","PeriodicalId":50393,"journal":{"name":"Idojaras","volume":"62 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Idojaras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28974/idojaras.2023.3.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to investigate and analyze the trend of autumn precipitation thickness pattern in Iran. For this purpose, two environmental and atmospheric databases have been used. Environmental data is prepared and networked in two stages, in the first stage with the help of 1434 stations and in the second stage with the help of 1061 stations. Atmospheric data includes geopotential height data obtained from the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP / NCAR). The spatial resolution of this data is 2.5 × 2.5 degrees. The thickness of the atmosphere, which is usually between 500 and 1000 hectopascals, is shown. This thickness is considered as the thickness of the whole atmosphere. The results of the autumn precipitation trend showed that although autumn precipitation on monthly and annual scales has experienced an increasing trend in most regions, in less than 5% of Iran, the upward trend has been significant. The most intense upward trend is observed in the form of spots in the central and northern parts of the Zagros Mountain, while the greatest decreasing trend has been observed in the form of cores along the Caspian coastal cities. The results of the autumn precipitation thickness pattern showed that the autumn precipitation thickness pattern is affected by deflection and instability due to high latitude cold and humid weather and low latitude hot and humid weather occurred in North Africa, in such a way that the Black Sea and the Mediterranean Sea provide the required moisture in high latitudes and the Red Sea and the Persian Gulf in low latitudes.