{"title":"Nonlinear dynamic responses of ballasted railway tracks using concrete sleepers incorporated with reinforced fibres and pre-treated crumb rubber","authors":"Anand Raj, Chayut Ngamkhanong, Lapyote Prasittisopin, Sakdirat Kaewunruen","doi":"10.1515/nleng-2022-0320","DOIUrl":null,"url":null,"abstract":"Abstract Damages on railway sleepers due to heavy impact loads induced by the movement of trains can be reduced by improving their impact resistance. Fibre-reinforced/pre-treated crumb rubber concrete sleepers (RCSs) have the potential to display significant impact resistance to withstand a high-magnitude impact load. The ideal proportions of pre-treated crumb rubber, steel fibres, and polypropylene fibres (PFs) can be identified based on the minimum cost-to-impact energy ratio after conducting a drop weight impact test on prisms. The numerical model developed to assess the behaviour of ballasted tracks has been validated using both simulation results and field measurements. Numerical studies have been conducted on ballasted rail tracks with steel and PF-reinforced/pre-treated RCSs using LS-DYNA software. Dynamic strain rate-dependent material parameters are introduced in the numerical simulations. The nonlinear effect of higher train speeds on dynamic track responses has been highlighted in this article. Although the static load-carrying capacity and modulus of elasticity of rubber concrete are low, their dynamic performance controls the track displacements from exceeding permissible limits. The outcome of this study will provide new insights into the effects of railway concrete sleepers incorporated with reinforced fibres and pre-treated crumb rubber on railway track performance in order to ensure safety and reliability before it is put into services.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Damages on railway sleepers due to heavy impact loads induced by the movement of trains can be reduced by improving their impact resistance. Fibre-reinforced/pre-treated crumb rubber concrete sleepers (RCSs) have the potential to display significant impact resistance to withstand a high-magnitude impact load. The ideal proportions of pre-treated crumb rubber, steel fibres, and polypropylene fibres (PFs) can be identified based on the minimum cost-to-impact energy ratio after conducting a drop weight impact test on prisms. The numerical model developed to assess the behaviour of ballasted tracks has been validated using both simulation results and field measurements. Numerical studies have been conducted on ballasted rail tracks with steel and PF-reinforced/pre-treated RCSs using LS-DYNA software. Dynamic strain rate-dependent material parameters are introduced in the numerical simulations. The nonlinear effect of higher train speeds on dynamic track responses has been highlighted in this article. Although the static load-carrying capacity and modulus of elasticity of rubber concrete are low, their dynamic performance controls the track displacements from exceeding permissible limits. The outcome of this study will provide new insights into the effects of railway concrete sleepers incorporated with reinforced fibres and pre-treated crumb rubber on railway track performance in order to ensure safety and reliability before it is put into services.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.