On A Group Involving The Automorphism of The Janko Group J2

IF 0.3 Q4 MATHEMATICS
Ayoub Basheer
{"title":"On A Group Involving The Automorphism of The Janko Group J2","authors":"Ayoub Basheer","doi":"10.22342/jims.29.2.1371.197-216","DOIUrl":null,"url":null,"abstract":"The Janko sporadic simple group J2 has an automorphism group 2. Using the electronic Atlas of Wilson [22], the group J2:2 has an absolutely irreducible module of dimension 12 over F2. It follows that a split extension group of the form 2^12:(J2:2) := G exists. In this article we study this group, where we compute its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. The inertia factor groups of G will be determined by analysing the maximal subgroups of J2:2 and maximal of the maximal subgroups of J2:2 together with various other information. It turns out that the character table of G is a 64×64 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 6.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"4 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.29.2.1371.197-216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Janko sporadic simple group J2 has an automorphism group 2. Using the electronic Atlas of Wilson [22], the group J2:2 has an absolutely irreducible module of dimension 12 over F2. It follows that a split extension group of the form 2^12:(J2:2) := G exists. In this article we study this group, where we compute its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. The inertia factor groups of G will be determined by analysing the maximal subgroups of J2:2 and maximal of the maximal subgroups of J2:2 together with various other information. It turns out that the character table of G is a 64×64 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 6.
关于涉及Janko群自同构的群[j]
Janko偶发单群J2有一个自同构群2。利用Wilson[22]的电子图谱,群J2:2在F2上有一个维数为12的绝对不可约模。因此,存在一个形式为2^12:(J2:2):= G的分裂扩展群。在本文中,我们研究了这个群,我们使用协集分析技术和Clifford-Fischer理论计算了它的共轭类和特征表。通过分析J2:2的极大子群和J2:2的极大子群中的极大子群,结合其他各种信息,确定G的惯性因子群。结果表明,G的字符表是一个64×64实值矩阵,而Fischer矩阵都是整数矩阵,大小从1到6不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信