{"title":"Formulation Development and Evaluation of Dry Adsorbed Nanoparticles of Curcumin and Piperine Dual Drug Loaded Nanostructured Lipid Carriers","authors":"Rajashree Hirlekar, Srinivas Bhairy, Alfiha Momin","doi":"10.37285/ijpsn.2023.16.4.2","DOIUrl":null,"url":null,"abstract":"Purpose: The present study was aimed at preparing stable dry adsorbed nanoparticles (DANs) of curcumin (CUR) and piperine (PIP) loaded nanostructured lipid carriers (NLCs). Methods: CUR and PIP-loaded NLCs (CP NLCs) were prepared by modified hot-melt emulsification using precirol ATO5 (PRE) as solid lipid, labrafac lipophile WL1349 (LAF) as liquid lipid, and a combination of tween 80 (T80) with gelucire 50/13 (G50/13) as surfactants. The NLCs system was subjected to physical stability, particle size, zeta potential, thermal behaviour, crystallinity study and in-vitro drug release. Further, an evaporative drying technique converted the NLC system into stable DANs by adsorbing onto mannitol (Pearlitol 200SD). The DANs were characterized for redispersion properties, particle size, flow properties and in-vitro drug release. The stability studies were carried out for 30 days. Results: The optimized CP NLCs were of imperfect type and had a mean particle size of 248.5 ± 12.8 nm (size distribution of 0.216 ± 0.021), a zeta potential of -9.03 ± 0.53 mV, an entrapment efficiency (EE) of 99.80 ± 0.21% (CUR), 100.05 ± 0.07% (PIP) with a drug recovery of 99.70 ± 0.21% (CUR) and 100.36 ± 0.12% (PIP). The X-ray diffraction pattern and endothermic peaks confirmed the encapsulation of actives in lipid matrices. The in-vitro drug release showed controlled release for 24 h. The optimized DANs led to maximum redispersion and retained a particle size of 268.4 ± 23.1 nm (distribution 0.235 ± 0.037) with controlled release similar to CP NLCs. The CP NLCs DANs showed reasonable stability for 30 days. Conclusions: The developed CP NLCs DANs showed a controlled release profile, and the adsorption technique can be used to improve the stability of NLC dispersion. The DANs can be offered in patient-friendly dosage forms such as sachets, capsules, and compressed tablets.","PeriodicalId":14382,"journal":{"name":"International Journal of Pharmaceutical Sciences and Nanotechnology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ijpsn.2023.16.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The present study was aimed at preparing stable dry adsorbed nanoparticles (DANs) of curcumin (CUR) and piperine (PIP) loaded nanostructured lipid carriers (NLCs). Methods: CUR and PIP-loaded NLCs (CP NLCs) were prepared by modified hot-melt emulsification using precirol ATO5 (PRE) as solid lipid, labrafac lipophile WL1349 (LAF) as liquid lipid, and a combination of tween 80 (T80) with gelucire 50/13 (G50/13) as surfactants. The NLCs system was subjected to physical stability, particle size, zeta potential, thermal behaviour, crystallinity study and in-vitro drug release. Further, an evaporative drying technique converted the NLC system into stable DANs by adsorbing onto mannitol (Pearlitol 200SD). The DANs were characterized for redispersion properties, particle size, flow properties and in-vitro drug release. The stability studies were carried out for 30 days. Results: The optimized CP NLCs were of imperfect type and had a mean particle size of 248.5 ± 12.8 nm (size distribution of 0.216 ± 0.021), a zeta potential of -9.03 ± 0.53 mV, an entrapment efficiency (EE) of 99.80 ± 0.21% (CUR), 100.05 ± 0.07% (PIP) with a drug recovery of 99.70 ± 0.21% (CUR) and 100.36 ± 0.12% (PIP). The X-ray diffraction pattern and endothermic peaks confirmed the encapsulation of actives in lipid matrices. The in-vitro drug release showed controlled release for 24 h. The optimized DANs led to maximum redispersion and retained a particle size of 268.4 ± 23.1 nm (distribution 0.235 ± 0.037) with controlled release similar to CP NLCs. The CP NLCs DANs showed reasonable stability for 30 days. Conclusions: The developed CP NLCs DANs showed a controlled release profile, and the adsorption technique can be used to improve the stability of NLC dispersion. The DANs can be offered in patient-friendly dosage forms such as sachets, capsules, and compressed tablets.