The optimizing numerical simulation of beam ions loss due to toroidal field ripple on EXL-50U spherical torus

None Hao Bao-Long, None Li Ying-Ying, None Chen Wei, None Hao Guang-Zhou, None Gu Xiang, None Sun Tian-Tian, None Wang Yu-Min, None Dong Jia-Qi, None Yuan Bao-Shan, None Peng Yuan-Kai, None Shi Yue-jiang, None Xie Hua-sheng, None Liu Min-Sheng, None ENN TEAM
{"title":"The optimizing numerical simulation of beam ions loss due to toroidal field ripple on EXL-50U spherical torus","authors":"None Hao Bao-Long, None Li Ying-Ying, None Chen Wei, None Hao Guang-Zhou, None Gu Xiang, None Sun Tian-Tian, None Wang Yu-Min, None Dong Jia-Qi, None Yuan Bao-Shan, None Peng Yuan-Kai, None Shi Yue-jiang, None Xie Hua-sheng, None Liu Min-Sheng, None ENN TEAM","doi":"10.7498/aps.72.20230749","DOIUrl":null,"url":null,"abstract":"Realization of high performance plasma of EXL-50U is very sensitive to NBI (neutral beam injection) heating, and it is expected that the fast ions of NBI are confined well and their energy is transferred to the background plasma by collision moderating. In this paper, the loss of fast ion ripple is simulated based on the equilibrium configuration, fast ion distribution and device waviness data given by the integrated simulation. It is found that the loss fraction of fast ion ripple is about 37%, and the local hot spot is about 0.6 MW/m<sup>2</sup>, which is unacceptable for the experimental operation of the device. The optimization method includes moving the plasma position and adding FI (ferritic steel plug-in) to reduce the ripple degree, increasing the <i>I</i><sub>p</sub> (plasma current) and optimizing the NBI injection angle. The results show that the ripple distribution must be controlled and the <i>I</i><sub>p</sub> must be increased to more than 600 kA, so that the fast ion loss can be reduced to 3%–4% and the local heat spot can be reduced by an order of magnitude. In this paper, the evaluation methods of fast ion ripple loss in device design are summarized, including the fast ion distribution in phase space, the overlap degree of ripple loss area, and the particle tracking on the time scale of total factor slowing down. The engineering and physical ways to reduce ripple loss are also summarized to provide simulation support for integrated simulation iterative optimization and plant operation.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20230749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Realization of high performance plasma of EXL-50U is very sensitive to NBI (neutral beam injection) heating, and it is expected that the fast ions of NBI are confined well and their energy is transferred to the background plasma by collision moderating. In this paper, the loss of fast ion ripple is simulated based on the equilibrium configuration, fast ion distribution and device waviness data given by the integrated simulation. It is found that the loss fraction of fast ion ripple is about 37%, and the local hot spot is about 0.6 MW/m2, which is unacceptable for the experimental operation of the device. The optimization method includes moving the plasma position and adding FI (ferritic steel plug-in) to reduce the ripple degree, increasing the Ip (plasma current) and optimizing the NBI injection angle. The results show that the ripple distribution must be controlled and the Ip must be increased to more than 600 kA, so that the fast ion loss can be reduced to 3%–4% and the local heat spot can be reduced by an order of magnitude. In this paper, the evaluation methods of fast ion ripple loss in device design are summarized, including the fast ion distribution in phase space, the overlap degree of ripple loss area, and the particle tracking on the time scale of total factor slowing down. The engineering and physical ways to reduce ripple loss are also summarized to provide simulation support for integrated simulation iterative optimization and plant operation.
EXL-50U球面环面环面场纹波对束流离子损耗的优化数值模拟
EXL-50U高性能等离子体的实现对NBI(中性束注入)加热非常敏感,预计NBI中的快离子将被很好地约束并通过碰撞减速将其能量转移到背景等离子体中。本文基于综合仿真给出的平衡态、快离子分布和器件波度数据,对快离子纹波的损耗进行了模拟。研究发现,快速离子纹波的损耗率约为37%,局部热点约为0.6 MW/m<sup>2</sup>,这对于器件的实验运行是不可接受的。优化方法包括移动等离子体位置,加入FI(铁素体钢插件)降低纹波度,增加<i> /i><sub>p</sub>(等离子体电流)和优化NBI注入角。结果表明,必须控制纹波分布,并且<i> i> /i><sub>p</sub>必须提高到600 kA以上,才能使快离子损失降低到3% ~ 4%,使局部热点降低一个数量级。本文综述了器件设计中快速离子纹波损失的评价方法,包括快速离子在相空间中的分布、纹波损失面积的重叠程度以及全因子慢化时间尺度上的粒子跟踪。总结了减少纹波损耗的工程和物理方法,为集成仿真迭代优化和工厂运行提供仿真支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信