A review on peak shaving techniques for smart grids

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023036
Syed Sabir Hussain Rizvi, Krishna Teerth Chaturvedi, Mohan Lal Kolhe
{"title":"A review on peak shaving techniques for smart grids","authors":"Syed Sabir Hussain Rizvi, Krishna Teerth Chaturvedi, Mohan Lal Kolhe","doi":"10.3934/energy.2023036","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Peak shaving techniques have become increasingly important for managing peak demand and improving the reliability, efficiency, and resilience of modern power systems. In this review paper, we examine different peak shaving strategies for smart grids, including battery energy storage systems, nuclear and battery storage power plants, hybrid energy storage systems, photovoltaic system installations, the real-time scheduling of household appliances, repurposed electric vehicle batteries, uni- and bi-directional electric vehicle charging, the demand response, the time-of-use pricing, load shedding systems, distributed generation systems and energy-efficient management. We analyze the potential of each strategy to reduce peak demand and shift energy consumption to off-peak hours, as well as identify the key themes critical to the success of peak shaving for smart grids, including effective coordination and communication, data analytics and predictive modeling and clear policy and regulatory frameworks. Our review highlights the diverse range of innovative technologies and techniques available to utilities and power system operators and it emphasizes the need for continued research and development in emerging areas such as blockchain technology and artificial intelligence. Overall, the implementation of peak shaving strategies represents a significant step toward a more sustainable, reliable and efficient power system. By leveraging the latest technologies and techniques available, utilities and power system operators can better manage peak demand, integrate renewable energy sources, and create a more reliable and secure grid for the future. By discussing cutting-edge technologies and methods to effectively manage peak demand and incorporate renewable energy sources, this review paper emphasizes the significance of peak shaving strategies for smart grids as a crucial pathway towards realizing a more sustainable, dependable and efficient power system.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"7 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Peak shaving techniques have become increasingly important for managing peak demand and improving the reliability, efficiency, and resilience of modern power systems. In this review paper, we examine different peak shaving strategies for smart grids, including battery energy storage systems, nuclear and battery storage power plants, hybrid energy storage systems, photovoltaic system installations, the real-time scheduling of household appliances, repurposed electric vehicle batteries, uni- and bi-directional electric vehicle charging, the demand response, the time-of-use pricing, load shedding systems, distributed generation systems and energy-efficient management. We analyze the potential of each strategy to reduce peak demand and shift energy consumption to off-peak hours, as well as identify the key themes critical to the success of peak shaving for smart grids, including effective coordination and communication, data analytics and predictive modeling and clear policy and regulatory frameworks. Our review highlights the diverse range of innovative technologies and techniques available to utilities and power system operators and it emphasizes the need for continued research and development in emerging areas such as blockchain technology and artificial intelligence. Overall, the implementation of peak shaving strategies represents a significant step toward a more sustainable, reliable and efficient power system. By leveraging the latest technologies and techniques available, utilities and power system operators can better manage peak demand, integrate renewable energy sources, and create a more reliable and secure grid for the future. By discussing cutting-edge technologies and methods to effectively manage peak demand and incorporate renewable energy sources, this review paper emphasizes the significance of peak shaving strategies for smart grids as a crucial pathway towards realizing a more sustainable, dependable and efficient power system.

智能电网调峰技术研究进展
& lt; abstract>调峰技术在管理高峰需求和提高现代电力系统的可靠性、效率和弹性方面变得越来越重要。在这篇综述文章中,我们研究了智能电网的不同调峰策略,包括电池储能系统,核能和电池储能发电厂,混合能源存储系统,光伏系统安装,家用电器的实时调度,重新用途的电动汽车电池,单向和双向电动汽车充电,需求响应,使用时间定价,减载系统,分布式发电系统和节能管理。我们分析了每种策略在减少高峰需求和将能源消耗转移到非高峰时段方面的潜力,并确定了智能电网调峰成功的关键主题,包括有效的协调和沟通、数据分析和预测建模以及明确的政策和监管框架。我们的审查强调了公用事业和电力系统运营商可用的各种创新技术和技术,并强调了在区块链技术和人工智能等新兴领域继续研究和开发的必要性。总的来说,调峰策略的实施是朝着更加可持续、可靠和高效的电力系统迈出的重要一步。通过利用最新的技术和技术,公用事业和电力系统运营商可以更好地管理高峰需求,整合可再生能源,为未来创造一个更可靠、更安全的电网。通过讨论有效管理高峰需求和纳入可再生能源的前沿技术和方法,本文强调了智能电网的调峰策略是实现更可持续、更可靠和更高效的电力系统的重要途径。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信