{"title":"Big data analytics adaptive prospects in sustainable manufacturing supply chain","authors":"Rohit Raj, Vimal Kumar, Bhavin Shah","doi":"10.1108/bij-11-2022-0690","DOIUrl":null,"url":null,"abstract":"Purpose Despite the current progress in realizing how Big Data Analytics can considerably enhance the Sustainable Manufacturing Supply Chain (SMSC), there is a major gap in the storyline relating factors of Big Data operations in managing information and trust among several operations of SMSC. This study attempts to fill this gap by studying the key enablers of using Big Data in SMSC operations obtained from the internet of Things (IoT) devices, group behavior parameters, social networks and ecosystem framework. Design/methodology/approach Adaptive Prospects (Improving SC performance, combating counterfeits, Productivity, Transparency, Security and Safety, Asset Management and Communication) are the constructs that this research first conceptualizes, defines and then evaluates in studying Big Data Analytics based operations in SMSC considering best worst method (BWM) technique. Findings To begin, two situations are explored one with Big Data Analytics and the other without are addressed using empirical studies. Second, Big Data deployment in addressing MSC barriers and synergistic role in achieving the goals of SMSC is analyzed. The study identifies lesser encounters of barriers and higher benefits of big data analytics in the SMSC scenario. Research limitations/implications The research outcome revealed that to handle operations efficiently a 360-degree view of suppliers, distributors and logistics providers' information and trust is essential. Practical implications In the Post-COVID scenario, the supply chain practitioners may use the supply chain partner's data to develop resiliency and achieve sustainability. Originality/value The unique value that this study adds to the research is, it links the data, trust and sustainability aspects of the Manufacturing Supply Chain (MSC).","PeriodicalId":48029,"journal":{"name":"Benchmarking-An International Journal","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Benchmarking-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/bij-11-2022-0690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose Despite the current progress in realizing how Big Data Analytics can considerably enhance the Sustainable Manufacturing Supply Chain (SMSC), there is a major gap in the storyline relating factors of Big Data operations in managing information and trust among several operations of SMSC. This study attempts to fill this gap by studying the key enablers of using Big Data in SMSC operations obtained from the internet of Things (IoT) devices, group behavior parameters, social networks and ecosystem framework. Design/methodology/approach Adaptive Prospects (Improving SC performance, combating counterfeits, Productivity, Transparency, Security and Safety, Asset Management and Communication) are the constructs that this research first conceptualizes, defines and then evaluates in studying Big Data Analytics based operations in SMSC considering best worst method (BWM) technique. Findings To begin, two situations are explored one with Big Data Analytics and the other without are addressed using empirical studies. Second, Big Data deployment in addressing MSC barriers and synergistic role in achieving the goals of SMSC is analyzed. The study identifies lesser encounters of barriers and higher benefits of big data analytics in the SMSC scenario. Research limitations/implications The research outcome revealed that to handle operations efficiently a 360-degree view of suppliers, distributors and logistics providers' information and trust is essential. Practical implications In the Post-COVID scenario, the supply chain practitioners may use the supply chain partner's data to develop resiliency and achieve sustainability. Originality/value The unique value that this study adds to the research is, it links the data, trust and sustainability aspects of the Manufacturing Supply Chain (MSC).
期刊介绍:
Benchmarking is big news for companies committed to total quality programmes. Its enthusiastic reception by many prominent business figures has created high levels of interest in a technique which promises big rewards for co-operating partners. Yet, like total quality itself, it must be understood in its proper context, and implemented single mindedly if it is to be effective - this journal helps companies to decide if benchmarking is right for them, and shows them how to go about it successfully.